Math 601 Homework 1 Solutions to selected problems

1. Problem 6. A space X is said to be contractible if the identity map $1_{X}: X \rightarrow X$ is homotopic to a constant map.
(a) Show that any convex open set in \mathbb{R}^{n} is contractible.
(b) Show that a contractible space is path connected.
(c) Show that if Y is contractible, then all maps of $X \rightarrow Y$ are homotopic to one another.
(d) Show that if X is contractible and Y is path connected, then all maps of $X \rightarrow Y$ are homotopic.

Solution:

(a)Let $X \subset \mathbb{R}^{n}$ be convex, and let $c \in X$. Let $f: X \rightarrow X$ be the constant map $f(x)=c$. Then $H: X \times I \rightarrow X$ defined by:

$$
H(x, t)=t c+(1-t) x
$$

is a homotopy between $1_{X}($ at $\mathrm{t}=0)$ and $f($ at $\mathrm{t}=1)$. Note that the map makes sense as $H(x, t) \in X$ for every $x \in X$ since X is convex.
(b)Let X be contractible, i.e. there's a homotopy H s.t. $H(x, 0)=x$ and $H(x, 1)=c$ for every $x \in X$, and for some fixed $c \in X$. Then, for each $x \in X$, $f_{x}(t)=H(x, t)$ is a path between x and c in X. So every point of X is connected to the fixed point c, by a path. Therefore any two points x_{1} and x_{2} of X can be joined via a path through c.
(c)Let Y be contractible, i.e. there is a homotopy H between 1_{Y} and a constant map $f(y)=c$. Let $g: X \rightarrow Y$. Then $H \circ g: X \times I$ is a homotopy between g and the constant map $\tilde{f}: X \rightarrow Y, \tilde{f}(x)=c$ for each x. So every map $g: X \rightarrow Y$ is homotopic to the constant map \tilde{f}. Since homotopy is an equivalence relation, this implies all maps $X \rightarrow Y$ are homotopic.
(d) X is contractible, i.e. there's a homotopy H as in (b). Let $f: X \rightarrow Y$. Then $f \circ H: X \times I \rightarrow Y$ is a homotopy between f and the constant map $\tilde{f} \equiv f(c)$. Now, let $f_{1} \equiv y_{1}$ and $f_{2} \equiv y_{2}$ be any two constant maps $X \rightarrow Y$. Let $\alpha: I \rightarrow Y$ be a path between y_{1} and y_{2}. Then $F(x, t)=\alpha(t)$ is a homotopy between f_{1} and f_{2}. So we have :
1)Every map $X \rightarrow Y$ is homotopic to some constant map.
2) Any two constant maps $X \rightarrow Y$ are homotopic.

Since homotopy is an equivalence relation, these two facts together imply that any two maps $X \rightarrow Y$ are homotopic.
2. Problem 8. Show that the operation $*$ of composition of paths induces a corresponding well-defined operation $*$ of composition of fixed end point homotopy classes of paths, that is associative, has left and right identities, and has inverses.
Solution: The operation on fixed endpoint homotopy classes of paths in a space X is defined as :

$$
[\alpha] *[\beta]=[\alpha * \beta]
$$

Well-defined: Suppose α_{1} homotopic to α_{2} and β_{1} homotopic to β_{2} via F, G : $I \times I \rightarrow X$ respectively. Then $H: I \times I \rightarrow X$ given by

$$
H(x, t)= \begin{cases}F(2 t, s) & \text { if } 0 \leq t \leq \frac{1}{2} \\ G(2 t-1, s) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

is a homotopy between $\alpha_{1} * \beta_{1}$ and $\alpha_{2} * \beta_{2}$. Therefore $\left[\alpha_{1} * \beta_{1}\right]=\left[\alpha_{2} * \beta_{2}\right]$ and the operation $*$ is well-defined on homotopy classes of paths in X.
Associative : We need to show that for paths f, g, h with contiguous images, the path $(f * g) * h$ is homotopic to the path $f *(g * h)$. Note that

$$
((f * g) * h)(s)= \begin{cases}f(4 s) & \text { if } 0 \leq s \leq \frac{1}{4} \\ g(4 s-1) & \text { if } \frac{1}{4} \leq s \leq \frac{1}{2} \\ h(2 s-1) & \text { if } \frac{1}{2} \leq s \leq 1\end{cases}
$$

and also

$$
(f *(g * h))(s)= \begin{cases}f(2 s) & \text { if } 0 \leq s \leq \frac{1}{2} \\ g(4 s-2) & \text { if } \frac{1}{2} \leq s \leq \frac{3}{4} \\ h(4 s-3) & \text { if } \frac{3}{4} \leq s \leq 1\end{cases}
$$

Then $H: I \times I \rightarrow X$ defined by

$$
H(t, s)= \begin{cases}f\left(\frac{4 s}{1+t}\right) & \text { if } 0 \leq s \leq \frac{1+t}{4} \\ g(4 s-1-t) & \text { if } \frac{1+t}{4} \leq s \leq \frac{2+t}{4} \\ h\left(\frac{4 s}{2-t}-\frac{2+t}{2-t}\right) & \text { if } \frac{2+t}{4} \leq s \leq 1\end{cases}
$$

is a homotopy between $(f * g) * h$ and $f *(g * h)$. That H is continuous can be seen by the pasting lemma.
Identities : For homotopy classes of paths between points x and y in X, we claim that the constant maps $c_{1}(s)=p$ and $c_{2}(s)=q$ are left and right identities of the $*$ operation respectively. To see this, construct an explicit homotopy between f and $c_{1} * f$ or between f and $f * c_{2}$ as done above for showing associativity, or use the idea of reparametrization of paths described in Hatcher, page 27.
Inverses : For a path f, the path f^{-1} defined by $f^{-1}(s)=f(1-s)$ is an inverse for f with respect to the operation $*$. Again, to check that $f * f^{-1}$ is homotopic to c_{1} or that $f^{-1} * f$ is homotopic to c_{2}, explicitly construct homotopies or use the idea of reparametrization of paths described in Hatcher.
3. Problem 12. Show that a continuous map $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ induces a group homomorphism $f_{*}: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(Y, y_{0}\right)$.

Solution: Define the map f_{*} as:

$$
f_{*}[\alpha]=[f \circ \alpha]
$$

for α a representative of a homotopy class of loops.
Well-defined : If α is homotopic to β via $H: I \times I \rightarrow X$ then $f \circ \alpha$ is homotopic to $f \circ \beta$ via $f \circ H$.
f_{*} is a group homomorphism : We need to show that

$$
\begin{equation*}
f_{*}([\alpha] *[\gamma])=f_{*}[\alpha] * f_{*}[\gamma] \tag{1}
\end{equation*}
$$

Recall that

$$
([\alpha] *[\gamma])(t)= \begin{cases}\alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ \gamma(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

So

$$
f_{*}([\alpha] *[\gamma])(t)= \begin{cases}f \circ \alpha(2 t) & \text { if } 0 \leq t \leq \frac{1}{2} \\ f \circ \gamma(2 t-1) & \text { if } \frac{1}{2} \leq t \leq 1\end{cases}
$$

But this is the same as $[f \circ \alpha] *[f \circ \gamma]$, which by the definition of f_{*}, is the right hand side of eqn (1).

