
Math 601 Homework 2 Solutions to selected problems

1. Problem 1. Show that the map p: R1 → S1 defined by

p(x) = (cos2πx, sin2πx)

is a covering map.

Solution:
For each point q0 ∈ S1, q0 = (cos2πx0, sin2πx0) for some x0 ∈ [0, 1). Let U be
an open neighbourhood of q0, U = {(cos2πx, sin2πx) : x ∈ (x0 − δ, x0 + δ)}, for
a fixed 0 < δ < 1

2
. Then p−1(U) = tn∈Z(n + x0 − δ, n + x0 + δ). Restricted to

each Un = (n + x0 − δ, n + x0 + δ), p is a homeomorphism onto U . Therefore U
is an evenly covered neighbourhood of q0. We can get such a set U for every point
q0 ∈ S1, so p is a covering map.2

2. Problem 6. Let p : E → B be a covering map, and suppose that B is connected.
Show that if p−1(b) has k elements for some b ∈ B , then it has k elements for every
b ∈ B. In this case, we say that E is a k-fold covering of B.

Solution:
Let Bn = {b ∈ B| p−1(b) has n elements}. Then B = tnBn. We’re given that
Bk 6= φ. It’s enough to show that each Bn is an open set, because the fact that B
is connected would then imply that all but one of the Bn’s is empty.
Let b ∈ Bn, and let U ⊆ B be an evenly covered neighbourhood of b, p−1(U) = tjUj
such that p restricted to each Uj is a homeomorphism onto U . Then, since p−1(b)
has n elements, it implies that the number of sets Uj is n. Thus for every x ∈ U , its
preimages lie in the Uj’s, and hence p−1(x) has n elements for each x ∈ U . Therefore
U ⊆ Bn, so Bn is open.2

3. Problem 12. Let f : S1 → S1 be defined by f(z) = zn. Note that f(1) = 1.
Compute the induced homomorphism f∗ : π1(S

1, 1)→ π1(S
1, 1).

Solution:
First observe that π1(S

1, 1) is isomorphic to the additive group Z. To see this one can
define a function φ : π1(S

1, 1)→ Z by defining it on loops as follows. Let p : R→ S1

be the covering map from Problem 1. For a loop α : I → S1, let α̃ : I → R be its
lift with initial point 0 ∈ R. Then define φ([α]) = α̃(1). (Checking that this map
is well-defined and is actually a group isomorphism, was the content of Problem 10.)

So, f∗ : π1(S
1, 1) → π1(S

1, 1) is actually a group homomorphism F from Z
to Z, and this is described by specifying the image of the generator 1 ∈ Z under
F . Therefore consider the loop γ(t) = e2πit, which is a generator of π1(S

1, 1). (It
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corresponds to 1 ∈ Z under the isomorphism φ.) Under the map f∗ it gets sent
to the loop f ◦ γ(t) = (e2πit)n = e2πint. The lift of this path starting at 0 ∈ R is
the path γ̃ : I → R, γ̃(t) = nt. Observe that γ̃(1) = n, so by the correspondence
φ, this implies that f ◦γ, i.e., f∗[γ], corresponds to n times the generator in π1(S

1, 1).

We conclude that the homomorphism f∗ : π1(S
1, 1) → π1(S

1, 1) is the ho-
momorphism Z→ Z that sends 1 to n. 2

Note : If you want to do the proof without going to the universal cover
R, you will need to show (by indicating an explicit homotopy) that the loop
f ◦ γ(t) = e2πint is homotopic to the loop γ ∗ · · · ∗ γ︸ ︷︷ ︸

n-times

, where ∗ means concatenation

of loops. This claim needs a proof!

4. (Hatcher, page 38, Problem 9) Let A1, A2, A3 be compact sets in R3. Use the
Borsuk-Ulam theorem to show that there is one plane P in R3 that simultaneously
divides each Ai into two pieces of equal measure.

Solution : We’re going to define a map S3 → R3 on which we’ll use the conclusion
of the Borsuk-Ulam theorem.

For this, we claim that every point on S3 is in one-to-one correspondence with an
oriented two-plane in R3. Any point (a, b, c, d) ∈ S3−{(0, 0, 0,±1)} corresponds to
a two-plane P : ax+by+cz+d = 0. And given a two-plane P : ax+by+cz+d = 0,
we have the corresponding point 1√

a2+b2+c2+d2
(a, b, c, d) ∈ S3 − {(0, 0, 0,±1)}.

Let’s also associate to the two-plane ax + by + cz + d = 0, the direction vector
v = (a, b, c) ∈ R3. Observe that P divides R3 into two half-spaces. Translating v so
its base point lies on the plane P , we denote by A the half-space that the endpoint
of v lies in.

Now, define a function f : S3 → R3, as :

f(a, b, c, d) = (m(A1 ∩ A),m(A1 ∩ A),m(A1 ∩ A)),

where m is the Lebesgue measure on R3. The function f is certainly continuous on
S3 − {(0, 0, 0,±1)}, and can be extended to a continuous function on all of S3, as
follows.

As (a, b, c, d) tends to (0, 0, 0, 1), the plane P moves away from the origin, but its
direction vector (a, b, c) points towards the origin. Since all the Ai’s are compact,
eventually, for the plane P being far enough out (i.e. (a, b, c, d) near enough
to (0, 0, 0, 1)), each Ai is completely contained in the half-space A. Therefore
eventually m(Ai∩A) = m(Ai) for each i, for all (a, b, c, d) near enough to (0, 0, 0, 1).
So we can define f(0, 0, 0, 1) = (m(A1),m(A2),m(A3)). Similar analysis shows we
can define f(0, 0, 0,−1) = 0, since all Ai’s lie in the complement of A, for (a, b, c, d)
near enough to (0, 0, 0,−1).
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Now that we’ve got the continuous function S3 → R3, the Borsuk-Ulam theorem
tells us that there’s a pair of antipodal points {x,−x} in S3 with f(x) = f(−x).
But f(x), f(−x) respectively give the measures of the portions of each Ai that lie in
the two half-spaces of the two-plane P corresponding to x. So f(x) = f(−x) means
that the plane P divides each Ai into two sets of equal measure.2
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