Math 601 Homework 2 Solutions to selected problems

1. Problem 1. Show that the map p: $\mathbb{R}^{1} \rightarrow S^{1}$ defined by

$$
p(x)=(\cos 2 \pi x, \sin 2 \pi x)
$$

is a covering map.

Solution:

For each point $q_{0} \in S^{1}, q_{0}=\left(\cos 2 \pi x_{0}, \sin 2 \pi x_{0}\right)$ for some $x_{0} \in[0,1)$. Let U be an open neighbourhood of $q_{0}, U=\left\{(\cos 2 \pi x, \sin 2 \pi x): x \in\left(x_{0}-\delta, x_{0}+\delta\right)\right\}$, for a fixed $0<\delta<\frac{1}{2}$. Then $p^{-1}(U)=\sqcup_{n \in \mathbb{Z}}\left(n+x_{0}-\delta, n+x_{0}+\delta\right)$. Restricted to each $U_{n}=\left(n+x_{0}-\delta, n+x_{0}+\delta\right), p$ is a homeomorphism onto U. Therefore U is an evenly covered neighbourhood of q_{0}. We can get such a set U for every point $q_{0} \in S^{1}$, so p is a covering map.
2. Problem 6. Let $p: E \rightarrow B$ be a covering map, and suppose that B is connected. Show that if $p^{-1}(b)$ has k elements for some $b \in B$, then it has k elements for every $b \in B$. In this case, we say that E is a k -fold covering of B .

Solution:

Let $B_{n}=\left\{b \in B \mid p^{-1}(b)\right.$ has n elements $\}$. Then $B=\sqcup_{n} B_{n}$. We're given that $B_{k} \neq \phi$. It's enough to show that each B_{n} is an open set, because the fact that B is connected would then imply that all but one of the B_{n} 's is empty.
Let $b \in B_{n}$, and let $U \subseteq B$ be an evenly covered neighbourhood of $b, p^{-1}(U)=\sqcup_{j} U_{j}$ such that p restricted to each U_{j} is a homeomorphism onto U. Then, since $p^{-1}(b)$ has n elements, it implies that the number of sets U_{j} is n. Thus for every $x \in U$, its preimages lie in the U_{j} 's, and hence $p^{-1}(x)$ has n elements for each $x \in U$. Therefore $U \subseteq B_{n}$, so B_{n} is open.
3. Problem 12. Let $f: S^{1} \rightarrow S^{1}$ be defined by $f(z)=z^{n}$. Note that $f(1)=1$. Compute the induced homomorphism $f *: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(S^{1}, 1\right)$.

Solution:

First observe that $\pi_{1}\left(S^{1}, 1\right)$ is isomorphic to the additive group \mathbb{Z}. To see this one can define a function $\phi: \pi_{1}\left(S^{1}, 1\right) \rightarrow \mathbb{Z}$ by defining it on loops as follows. Let $p: \mathbb{R} \rightarrow S^{1}$ be the covering map from Problem 1. For a loop $\alpha: I \rightarrow S^{1}$, let $\tilde{\alpha}: I \rightarrow \mathbb{R}$ be its lift with initial point $0 \in \mathbb{R}$. Then define $\phi([\alpha])=\tilde{\alpha}(1)$. (Checking that this map is well-defined and is actually a group isomorphism, was the content of Problem 10.)

So, $f *: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(S^{1}, 1\right)$ is actually a group homomorphism F from \mathbb{Z} to \mathbb{Z}, and this is described by specifying the image of the generator $1 \in \mathbb{Z}$ under F. Therefore consider the loop $\gamma(t)=e^{2 \pi i t}$, which is a generator of $\pi_{1}\left(S^{1}, 1\right)$. (It
corresponds to $1 \in \mathbb{Z}$ under the isomorphism ϕ.) Under the map f_{*} it gets sent to the loop $f \circ \gamma(t)=\left(e^{2 \pi i t}\right)^{n}=e^{2 \pi i n t}$. The lift of this path starting at $0 \in \mathbb{R}$ is the path $\tilde{\gamma}: I \rightarrow \mathbb{R}, \tilde{\gamma}(t)=n t$. Observe that $\tilde{\gamma}(1)=n$, so by the correspondence ϕ, this implies that $f \circ \gamma$, i.e., $f_{*}[\gamma]$, corresponds to n times the generator in $\pi_{1}\left(S^{1}, 1\right)$.

We conclude that the homomorphism $f *: \pi_{1}\left(S^{1}, 1\right) \rightarrow \pi_{1}\left(S^{1}, 1\right)$ is the homomorphism $\mathbb{Z} \rightarrow \mathbb{Z}$ that sends 1 to n.

Note : If you want to do the proof without going to the universal cover \mathbb{R}, you will need to show (by indicating an explicit homotopy) that the loop $f \circ \gamma(t)=e^{2 \pi i n t}$ is homotopic to the loop $\underbrace{\gamma * \cdots * \gamma}_{n \text {-times }}$, where $*$ means concatenation of loops. This claim needs a proof!
4. (Hatcher, page 38, Problem 9) Let A_{1}, A_{2}, A_{3} be compact sets in \mathbb{R}^{3}. Use the Borsuk-Ulam theorem to show that there is one plane P in \mathbb{R}^{3} that simultaneously divides each A_{i} into two pieces of equal measure.
Solution : We're going to define a map $S^{3} \rightarrow \mathbb{R}^{3}$ on which we'll use the conclusion of the Borsuk-Ulam theorem.

For this, we claim that every point on S^{3} is in one-to-one correspondence with an oriented two-plane in \mathbb{R}^{3}. Any point $(a, b, c, d) \in S^{3}-\{(0,0,0, \pm 1)\}$ corresponds to a two-plane $P: a x+b y+c z+d=0$. And given a two-plane $P: a x+b y+c z+d=0$, we have the corresponding point $\frac{1}{\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}}(a, b, c, d) \in S^{3}-\{(0,0,0, \pm 1)\}$.

Let's also associate to the two-plane $a x+b y+c z+d=0$, the direction vector $\mathbf{v}=(a, b, c) \in \mathbb{R}^{3}$. Observe that P divides \mathbb{R}^{3} into two half-spaces. Translating \mathbf{v} so its base point lies on the plane P, we denote by A the half-space that the endpoint of \mathbf{v} lies in.

Now, define a function $f: S^{3} \rightarrow \mathbb{R}^{3}$, as :

$$
f(a, b, c, d)=\left(m\left(A_{1} \cap A\right), m\left(A_{1} \cap A\right), m\left(A_{1} \cap A\right)\right),
$$

where m is the Lebesgue measure on \mathbb{R}^{3}. The function f is certainly continuous on $S^{3}-\{(0,0,0, \pm 1)\}$, and can be extended to a continuous function on all of S^{3}, as follows.

As (a, b, c, d) tends to $(0,0,0,1)$, the plane P moves away from the origin, but its direction vector (a, b, c) points towards the origin. Since all the A_{i} 's are compact, eventually, for the plane P being far enough out (i.e. (a, b, c, d) near enough to $(0,0,0,1)$), each A_{i} is completely contained in the half-space A. Therefore eventually $m\left(A_{i} \cap A\right)=m\left(A_{i}\right)$ for each i, for all (a, b, c, d) near enough to $(0,0,0,1)$. So we can define $f(0,0,0,1)=\left(m\left(A_{1}\right), m\left(A_{2}\right), m\left(A_{3}\right)\right)$. Similar analysis shows we can define $f(0,0,0,-1)=0$, since all A_{i} 's lie in the complement of A, for (a, b, c, d) near enough to $(0,0,0,-1)$.

Now that we've got the continuous function $S^{3} \rightarrow \mathbb{R}^{3}$, the Borsuk-Ulam theorem tells us that there's a pair of antipodal points $\{x,-x\}$ in S^{3} with $f(x)=f(-x)$. But $f(x), f(-x)$ respectively give the measures of the portions of each A_{i} that lie in the two half-spaces of the two-plane P corresponding to x. So $f(x)=f(-x)$ means that the plane P divides each A_{i} into two sets of equal measure.

