Math 601 Homework 3 Solutions to selected problems

1. Problem 5. Show that the fundamental group of $R^{3}-\{0\}$ is trivial, i.e., show that this space is simply connected.
Hint: It may be helpful to approximate a loop in $\mathbb{R}^{3}-\{0\}$ by a polygonal loop.

Solution:

The map $F: \mathbb{R}^{3}-\{0\} \rightarrow S^{2}$ given by $x \mapsto \frac{x}{|x|}$ is a deformation retraction of $\mathbb{R}^{3}-\{0\}$ onto the 2 -sphere. Therefore $\pi_{1}\left(\mathbb{R}^{3}-\{0\}\right) \cong \pi_{1}\left(S^{2}\right)$. So we just need to show that S^{2} is simply connected.
Given any loop $\gamma \rightarrow S^{2}$, we want to show that γ is homotopic to the trivial loop. If there exists a point $p \in S^{2}$ not in the image of γ, then the image of γ is contained in $S^{2}-\{x\}$, which is homeomorphic to \mathbb{R}^{2}. Since \mathbb{R}^{2} is contractible, every loop in it is homotopic to the trivial loop. Hence γ is homotopic to the trivial loop in S^{2}.
Note that γ is merely continuous and not smooth, and continuous functions can be pretty badly-behaved (e.g. space-filling curves). If there's no $p \in S^{2}$ that's not in the image of γ (i.e. if γ is surjective) then we need to first homotope γ to a curve that's not surjective, and then apply the argument in the previous paragraph.
Exercise : Give a rigorous argument explaining how, given a point $p \in S^{2}$ you will homotope the curve γ to a curve that doesn't intersect p.
Note : This argument works for all $S^{m-1}, m \geq 3$ as well, so we actually get that for all $m \geq 3, \pi_{1}\left(\mathbb{R}^{m}-\{0\}\right) \cong \pi_{1}\left(S^{m-1}\right) \cong\{0\}$.
2. Problem 7. Prove that the fundamental group of the real projective plane $\mathbb{R} P^{2}$ is isomorphic to \mathbb{Z}_{2}, a cyclic group of order 2 .
Likewise for real projective n-space, $\mathbb{R} P^{n}$.

Solution:

By the solution to Problem 5 above, we know that S^{2} is simply connected. Also we have a two-sheeted covering map $p: S^{2} \rightarrow \mathbb{R} P^{2}$ sending a pair of antipodal points on the sphere to their equivalence class in $\mathbb{R} P^{2}$. By Problem 11 of HW\#2, this implies that for any $x \in \mathbb{R} P^{2}$ there's a set bijection $\pi_{1}\left(\mathbb{R} P^{2}\right) \rightarrow p^{-1}(x)$. Therefore $\pi_{1}\left(\mathbb{R} P^{2}\right)$ has two elements, and hence must be the group \mathbb{Z}_{2}, the only group of order two.
As noted in the solution to Problem 5 above, $\pi_{1}\left(S^{n}\right) \cong\{0\}$ for all $n \geq 2$, so an analogous argument to the one in the previous paragraph gives that $\pi_{1}\left(\mathbb{R} P^{n}\right) \cong \mathbb{Z}_{2}$ for $n \geq 2$. For the lower dimensional cases : $\mathbb{R} P^{1} \cong S^{1}$, so $\pi_{1}\left(\mathbb{R} P^{1}\right) \cong \mathbb{Z}$, and $\mathbb{R} P^{0} \cong\{$ point $\}$, so $\pi_{1}\left(\mathbb{R} P^{0}\right) \cong\{0\}$.
3. Problem 14. Prove that if $g: S^{2} \rightarrow S^{2}$ is continuous and $g(x) \neq g(-x)$ for all $x \in S^{2}$, then g is onto.

Solution:

Suppose g is not onto, and let $q \in S^{2}$ be a point not in the image of g. Let $\phi: S^{2}-\{q\} \rightarrow \mathbb{R}^{2}$ be a homeomorphism. Then $\phi \circ g: S^{2} \rightarrow \mathbb{R}^{2}$ is a continuous map, so applying the Borsuk-Ulam theorem to this map gives that there's an $x \in S^{2}$ such that $\phi \circ g(x)=\phi \circ g(-x)$. Since ϕ is a homeomorphism and $\operatorname{image}(\phi) \subset S^{2}-\{q\}$, this implies that $g(x)=g(-x)$ for this point $x \in S^{2}$, a contradiction.
4. Problem 18. Show that, given a nonvanishing vector field on D^{2}, there exists a point of S^{1} where the vector field points directly inward, and a point of S^{1} where it points directly outward.

Solution:

Think of the vector field as a function $V: D^{2} \rightarrow \mathbb{R}^{2}$. Since it is non-vanishing, we can define a map $F: D^{2} \rightarrow S^{1}, F(x)=\frac{V(x)}{|V(x)|}$. Therefore the map $\left.F\right|_{S^{1}}: S^{1} \rightarrow S^{1}$ is null-homotopic, since it extends to the map F defined on the entire disc D^{2} (which is a contractible space).
Now, assuming that there's no point of S^{1} where V points directly inward, we get that there's no point of S^{1} for which $F(x)=-x$. Then $H(x, t)=\frac{t x+(1-t) F(x)}{|t x+(1-t) F(x)|}$ is well-defined (denominator is never zero), and is a homotopy between F and the identity map of S^{1}. But this is a contradiction, since the identity map induces an isomorphism on $\mathbb{Z} \cong \pi_{1}\left(S^{1}\right)$ while the constant map (and hence any null-homotopic map) induces the trivial homomorphism $1 \mapsto 0$.
To show that there's a point of S^{1} where V points directly outward, apply the above argument to the non-vanishing vector field $-V$, so we get that there's a point where $-V$ points directly inward! That's the same as saying that at this point, V points directly outward.

