
Math 601 Homework 3 Solutions to selected problems

1. Problem 5. Show that the fundamental group of R3−{0} is trivial, i.e., show that
this space is simply connected.
Hint: It may be helpful to approximate a loop in R3 − {0} by a polygonal loop.

Solution:
The map F : R3−{0} → S2 given by x 7→ x

|x| is a deformation retraction of R3−{0}
onto the 2-sphere. Therefore π1(R3 − {0}) ∼= π1(S

2). So we just need to show that
S2 is simply connected.

Given any loop γ → S2, we want to show that γ is homotopic to the trivial loop. If
there exists a point p ∈ S2 not in the image of γ, then the image of γ is contained
in S2 − {x}, which is homeomorphic to R2. Since R2 is contractible, every loop in
it is homotopic to the trivial loop. Hence γ is homotopic to the trivial loop in S2.

Note that γ is merely continuous and not smooth, and continuous functions can be
pretty badly-behaved (e.g. space-filling curves). If there’s no p ∈ S2 that’s not in
the image of γ (i.e. if γ is surjective) then we need to first homotope γ to a curve
that’s not surjective, and then apply the argument in the previous paragraph.

Exercise : Give a rigorous argument explaining how, given a point p ∈ S2 you will
homotope the curve γ to a curve that doesn’t intersect p.

Note : This argument works for all Sm−1, m ≥ 3 as well, so we actually get that
for all m ≥ 3, π1(Rm − {0}) ∼= π1(S

m−1) ∼= {0}. 2

2. Problem 7. Prove that the fundamental group of the real projective plane RP 2 is
isomorphic to Z2, a cyclic group of order 2.
Likewise for real projective n-space, RP n.

Solution:
By the solution to Problem 5 above, we know that S2 is simply connected. Also we
have a two-sheeted covering map p : S2 → RP 2 sending a pair of antipodal points
on the sphere to their equivalence class in RP 2. By Problem 11 of HW#2, this
implies that for any x ∈ RP 2 there’s a set bijection π1(RP 2) → p−1(x). Therefore
π1(RP 2) has two elements, and hence must be the group Z2, the only group of order
two.

As noted in the solution to Problem 5 above, π1(S
n) ∼= {0} for all n ≥ 2, so an

analogous argument to the one in the previous paragraph gives that π1(RP n) ∼= Z2

for n ≥ 2. For the lower dimensional cases : RP 1 ∼= S1, so π1(RP 1) ∼= Z, and
RP 0 ∼= {point}, so π1(RP 0) ∼= {0}. 2

3. Problem 14. Prove that if g : S2 → S2 is continuous and g(x) 6= g(−x) for all
x ∈ S2, then g is onto.
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Solution:
Suppose g is not onto, and let q ∈ S2 be a point not in the image of g. Let
φ : S2−{q} → R2 be a homeomorphism. Then φ◦g : S2 → R2 is a continuous map,
so applying the Borsuk-Ulam theorem to this map gives that there’s an x ∈ S2 such
that φ ◦ g(x) = φ ◦ g(−x). Since φ is a homeomorphism and image(φ) ⊂ S2 − {q},
this implies that g(x) = g(−x) for this point x ∈ S2, a contradiction. 2

4. Problem 18. Show that, given a nonvanishing vector field on D2, there exists a
point of S1 where the vector field points directly inward, and a point of S1 where it
points directly outward.

Solution:
Think of the vector field as a function V : D2 → R2. Since it is non-vanishing, we
can define a map F : D2 → S1, F (x) = V (x)

|V (x)| . Therefore the map F |S1 : S1 → S1 is

null-homotopic, since it extends to the map F defined on the entire disc D2 (which
is a contractible space).

Now, assuming that there’s no point of S1 where V points directly inward, we get
that there’s no point of S1 for which F (x) = −x. Then H(x, t) = tx+(1−t)F (x)

|tx+(1−t)F (x)| is

well-defined (denominator is never zero), and is a homotopy between F and the
identity map of S1. But this is a contradiction, since the identity map induces an
isomorphism on Z ∼= π1(S

1) while the constant map (and hence any null-homotopic
map) induces the trivial homomorphism 1 7→ 0.

To show that there’s a point of S1 where V points directly outward, apply the above
argument to the non-vanishing vector field −V , so we get that there’s a point where
−V points directly inward! That’s the same as saying that at this point, V points
directly outward. 2
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