Math 601 Homework 7 Solutions to selected problems

1. Problem 8. If $i: A \rightarrow X$ is the inclusion of a retract of X, show that $i_{*}: H_{k}(A) \rightarrow$ $H_{k}(X)$ is a monomorphism onto a direct summand of $H_{k}(X)$. If A is a deformation retract of X, show that i_{*} is an isomorphism.

Solution:

If $r: X \rightarrow A$ is a retraction, then we have : $r \circ i=i d_{A}$ as a map from A to A. On homology, this is $r_{*} \circ i_{*}=\left(i d_{A}\right)_{*}=i d_{H_{k}(A)}$. Since $i d_{H_{k}(A)}$ is injective, this implies that i_{*} must be injective as well. Therefore i_{*} is a monomorphism onto a subgroup $H=i_{*}\left(H_{k}(A)\right)$ of $H_{k}(X)$. We still need to show that H is a direct summand of $H_{k}(X)$.
Define the subgroup $K=k e r\left(r_{*}\right)$ of $H_{k}(X)$. Then $H \cap K=\phi$. To see this, let $y \in H \cap K$. Since $y \in H, y=i_{*}(z)$ for some $z \in H_{k}(A)$. But since $y \in K, r_{*}(y)=0$, so $r_{*} \circ i_{*}(z)=0$, so $\left(i d_{A}\right)_{*}(z)=0$, so $z=0$, which means y must be 0 .
Next, observe that any $x \in H_{k}(X)$ can be written as $x=i_{*} \circ r_{*}(x)+\left(x-i_{*} \circ r_{*}(x)\right)$. The first term clearly lies in H. Also, $r_{*}\left(x-i_{*} \circ r_{*}(x)\right)=r_{*} x-r_{*} i_{*} \circ r_{*}(x)=$ $r_{*} x-\left(i d_{A}\right)_{*} \circ r_{*}(x)=0$, so the second term lies in K.
This shows that $H_{k}(X)=H \oplus K$.
$* * * * *$
If r is a deformation retraction then $i \circ r$ is homotopic to $i d_{X}$, so on homology, $i_{*} \circ r_{*}=\left(i d_{X}\right)_{*}$, which implies that i_{*} is surjective. Along with the previous part, this shows that i_{*} is an isomorphism.
2. Problem 9. Show that it is impossible to retract the ball B^{n} onto its boundary $\partial B^{n}=S^{n-1}$.

Solution:

Suppose there exists a retraction map $r: B^{n} \rightarrow S^{n-1}$. Then by the previous question, $i_{*}: H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(B^{n}\right)$ is a monomorphism. But $H_{n-1}\left(S^{n-1}\right) \cong \mathbb{Z}$, and $H_{n-1}\left(B^{n}\right) \cong 0$ for all $n-1 \geq 1$. Therefore we've got a monomorphism from \mathbb{Z} to the trivial group, a contradiction.
For the case of B^{1} (a closed interval) and S^{0} (disjoint union of two points), we see that any continuous function $r: B^{1} \rightarrow S^{0}$ must map the entire interval onto one of the points (continuous image of a connected set must be connected) Hence r cannot be the identity map when restricted to the boundary S^{0}.
3. Problem 10. Show that every continuous map of B^{n} to itself must have a fixed point.

Solution:

Suppose $f: B^{n} \rightarrow B^{n}$ is a continuous map without fixed points. Then we get a
well-defined map $F: B^{n} \rightarrow \partial B^{n}$ as follows. For any $x \in B^{n}$, consider the ray starting at $f(x)$ and passing through x, and let $F(x)$ be the point where this ray hits the boundary. Then F is continuous, and by its construction, F is the identity map on $\partial B^{n}=S^{n-1}$. Therefore $F: B^{n} \rightarrow \partial B^{n}$ is a retraction map. But by the previous problem, there does not exist a retraction $F: B^{n} \rightarrow \partial B^{n}$. A contradiction.
4. Problem 13. Show that a continuous vector field on $S^{2 n}$ must vanish somewhere. Solution:
Suppose \mathbf{V} is a non-vanishing vector field on $S^{2 n}$. Then for each $x \in S^{2 n} \frac{\mathbf{V}(\mathbf{x})}{|\mathbf{V}(\mathbf{x})|}$ is well-defined, and by translating the starting point of the vector to the origin, it can be thought of as a moving point on the sphere $S^{2 n}$ Also note that for each x, the vector \mathbf{x} is orthogonal to the vector $\frac{\mathbf{V}(\mathbf{x})}{|\mathbf{V}(\mathbf{x})|}$. Therefore, if we define

$$
H(x, t)=\cos (t) \mathbf{x}+\sin (t) \frac{\mathbf{V}(\mathbf{x})}{|\mathbf{V}(\mathbf{x})|}
$$

then for each $t \in[0, \pi], H(x, t)$ lies on the unit sphere $S^{2 n}$. Also, $H(x, 0)=x=$ $i d_{S^{2 n}}(x)$, and $H(x, \pi)=-x=\alpha(x)$, where α is the antipodal map of the sphere. So H is a homotopy between $i d_{S^{2 n}}$ and α. But $\operatorname{deg}\left(i d_{S^{2 n}}\right)=1$, and by the solution of Problem 12., $\operatorname{deg}(\alpha)=(-1)^{2 n+1}=-1$, so $i d_{S^{2 n}}$ and α cannot be homotopic. A contradiction.
5. Problem 15. (Borsuk-Ulam theorem for S^{n}.) Show there is no continuous antipode-preserving map $f: S^{n} \rightarrow S^{n-1}$.

Solution:

Suppose $f: S^{n} \rightarrow S^{n-1}$ is a continuous antipode-preserving map. Then the restriction of f to the equator $S^{n-1} \rightarrow S^{n-1}$ defines a antipode-preserving map of S^{n-1} to itself. Therefore by Problem 14., $g=f \mid S^{n-1}$ cannot be homotoped to a constant map $S^{n-1} \rightarrow S^{n-1}$. In other words, $g_{*}: H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(S^{n-1}\right)$, which is actually $g_{*}: \mathbb{Z} \rightarrow \mathbb{Z}$, cannot be the zero homomorphism.
On the other hand, $g=f \circ i$, so $g_{*}=f_{*} \circ i_{*}: H_{n-1}\left(S^{n-1}\right) \rightarrow H_{n-1}\left(S^{n}\right) \rightarrow$ $H_{n-1}\left(S^{n-1}\right)$, where i is the inclusion of the equator S^{n-1} into S^{n}. Therefore g_{*} factors through the group $H_{n-1}\left(S^{n}\right)=\{0\}$, which means g_{*} must be the zero homomorphism. A contradiction.

