Math 601 Homework 7 Solutions to selected problems

1. Problem (E) Let F': R® — R" be a homeomorphism which preserves distances
between points, that is, d(F(x), F(y)) = d(x,y) for all pair of points z and y in R".
Suppose, in addition, that F'(0) = 0, where 0 denotes the origin in R"™. Prove that
F is an orthogonal linear transformation.

Solution:
Since F(0) = 0, we have for each x € R",

|F ()] = [F(z) = 0] = d(F(x),0) = d(F(z), F(0)) = d(z,0) = |z|
Using this in d(F(x), F(y)) = d(x,y) gives us :
|[F(z) = F(y)|* = |z —y/*

)=
= [F(2)]* = 2(F(2), F(y)) + |F(y)I* = |2 = (z,9) + [y[
= (F(2), F(y)) = (,y)

Therefore F' preserves the inner product between vectors in R™. Now we’ll use this to
show that F'is linear. We first claim that for all z,y € R", F(z+y) = F(z)+ F(y),
ie. |F(x+vy)— F(xr) — F(y)| = 0. Using the fact that F' preserves norm and inner
product, we have :
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2

|F(x+y)— F(z) — F(y)]”

=[F(z+ ) + |[F(@)]? + |[F(y)|> = 2(F(z 4+ y), F(2)) — 2(F(z +y), F(y))
+ 2(F(z), F(y))

=[x+ y* + |2 + |y]* — 20z + y,2) — 2(z +y,y) + 2(z,y)

=[(z +y) —z -yl

—0

Therefore F' is additive. That I’ respects scalar multiplication can be proved sim-
ilarly by examining |F(Ax) — AF(z)|. Therefore F' is a linear map. We showed
earlier that F' preserves inner products; this implies that F' is an orthogonal linear
transformation. O

2. Problem (H) Use the Mayer-Vietoris sequence to compute the homology of real
projective n-space RP™.
Solution:
We will use induction on the dimension n to show that



Z ifi=0o0ri=nisodd
Z]2 if0<i<nisodd
{0} if 0 <i<mniseven
{0} ifi=mniseven

H(RP") =

Also for each n, homology of RP™ in dimensions greater than n is zero. Note that
Hy(RP™) = Z by connectedness. We first give the proof for n = 2 and n = 3.

Homology of RP? : To show that H;(RP?) = Z/2 and H,(RP?) = {0}
we use the Mayer-Vietoris (M-V) sequence. Cover RP? by two open sets U and
V defined as follows. RP? can be thought of as an identification space obtained
from a disk D? (the closed “northern hemisphere”) by identifying points on the
boundary S' via the antipodal map of S*.

Define U to be the “northern hemisphere” minus the boundary, inside of
RP2. This is an open ball, hence contractible, and its homologies after the zero-eth
one, are all zero.

Define V' to be the compliment of a small ball around the north pole, inside
of RP2. This set is a tubular neighbourhood of the RP! sitting inside RP? as the
space gotten by doing identifications on the boundary S! of the original disk. In
particular, V' deformation retracts onto RP' (which is in fact homeomorphic to
S1), so for purposes of homology V' can be treated as RP! (i.e. S1).

The intersection U N V is homeomorphic to S!' x I, hence deformation re-
tracts to S', and for purposes of homology can be treated as S'. Notice however
that this S! wraps twice around the circle RP! described above.

We're now ready to use the M-V sequence with these sets. We have the
long exact sequence (les):

H(UNV) = Hy(U)® Ho(V) = Ho(UUV) S H(UNV) S H(U) D H (V) — - --
which is

Hy(SY) — Hy(D?) @ Hy(RPY) — Hy(RP?) % H (SY) S HY(D?) @ Hy(RPY) — - --
So we have

02000 HRPYSZ5 002 — -

So we get that Ho(RP?) injects into Z via 0. Also, by the earlier observation
that the S! generating U NV wraps twice around the S' generating V', the map
Y : Z — Z is multiplication by 2, hence injective. Therefore ker(y)) = 0. By
exactness, ker(1)) = im(9), which implies that the image of 9 is 0, so Ho(RP?) = 0.



For H;(RP?) we look at the following portion of the les :

HUNV) S H(U) e H(V) S H(RP?) 2 Hy(UNV) S Hy(U) @ Ho(V)
which is

Z508Z5 HHRP) S ZS 207

By the definition of the maps in the M-V sequence, « is the map 1 — (1,—1),
which is injective. Therefore ker(a) = 0, so im(p) = 0, i.e. p is the zero
homomorphism. ~ This implies that ¢ surjects onto H;(RP?).  Therefore
H\(RP?) = Z/ker(¢) = Z/im(yp) = Z/27Z. Also, for dimensions greater
than 2, the M-V sequence implies that the homology of RP? is zero, since it is
surrounded by zeros in the les. This completes the proof of the homology of RP?.

Homology of RP? : Analogously to the case of RP?, we consider RP? as
an identification space gotten from D? by antipodal identification on the boundary
S2?. We take the open sets to be U = an open disk neighbourhood of the north
pole, V' = a neighbourhood of the RP? inside of RP? which is the quotient of
the above-mentioned S?. Then U has trivial homology in dimensions bigger than
0, V deformation retracts onto RP2?, whose homology we computed above, and
UNV = S? x I which deformation retracts onto S2.

Now we have the M-V sequence :

Hy(UNV) = Hy(U) @ Hy(V) — Hy(RP?*) S Hy(UNV) S Hy(U) @ Ho(V) — - --
which is

05000 HRPYSZ5 000 -

Exactness implies that 0 is an isomorphism, so H3(RP3) = Z. Next, we have :

Hy(U) & Hy(V) S Hy(RP?) & H(UNV)
which is

08 0% Hy(RP?) 5 0

which implies that Hy(RP?) = 0. Finally, we have :

HUNV) = HU)e H (V)L HRPY) S H(UNV) S Hy(U) ® Hy(V)
which is

0500Z25 TR L ZL 202

The map h is given by 1 +— (1, —1), hence is injective. Therfore the image of g is
zero, i.e. g is the zero homomorphism, which implies that f is surjective. Because
of the 0 at the start of the sequence, f is also injective, hence an isomorphism.
Hence H,(RP3) = Z/2. Note also that homologies in higher dimensions are zero
by the same argument as for RP2.



Homology of RP" Now that we have the base cases, we're ready to induct
on the dimension. So, let’s suppose the homologies of RP*, k < n, are as claimed.
We need to prove for RP™. Define open sets U, V analogous to the earlier cases.
Then for purposes of homology, U = D", V =RP" ! and UNV = S* L.

The M-V sequence gives us :
H(UNV)— H(U)® H (V) = H(RP") — 0

where the last zero can be explained using the last sequence of the argument for
RP3, where it’s shown that ¢ is the zero homomorphism. Also, we're assuming
n>3,s0 H(UNV)=H(S" ') =0. So, we have :

0—>0dZ/2— H(RP") =0
which implies that H;(RP™) = Z/2. Next, for 1 <i < n — 1, we have:

which is
0—0® H;(RP" ') — Hy(RP") =0

since H;(S" ') = H;_1(S"') = 0. Therfore, H;(RP") = H;(RP"'), and we get
from the induction hypothesis that H;(RP™) is Z/2 if i is odd, and it is 0 if ¢ is
even. Lastly, we have the sequence :

0 — Hy(RP") — Z — Hy 1 (U) @ Hyy (V) — H,_y(RP™) = 0

using the homology of RP"! and of S"~!. If n is odd, then n — 1 is even,
so H, 1(U) ® H, 1(V) = H, 1(RP"!') = 0, which implies by exactness that
H,(RP") =Z and H, 1(RP") =0. If nis even, n— 1 is odd, so H,,_1(RP"™') = Z,
so the sequence looks like :

0= H,(RP" S Z 50822 H, |(RP") = 0

Because the S"~! generating U NV wraps twice around the RP"~! generating V/,
the map 3 is 1 — (0,—2), which is injective. Exactness then implies that « is
the zero homomorphism, so H,(RP"™) = 0. Also, 7 is surjective, so H,_;(RP™) =
Z] ker(y) = Z/im(f) = Z/27Z. Note also that homologies in higher dimensions are
zero by the same argument as for RP2. This completes the proof of the homology
of RP". O



