
Math 601 Homework 7 Solutions to selected problems

1. Problem (E) Let F : Rn → Rn be a homeomorphism which preserves distances
between points, that is, d(F (x), F (y)) = d(x, y) for all pair of points x and y in Rn.
Suppose, in addition, that F (0) = 0, where 0 denotes the origin in Rn. Prove that
F is an orthogonal linear transformation.
Solution:
Since F (0) = 0, we have for each x ∈ Rn,

|F (x)| = |F (x)− 0| = d(F (x), 0) = d(F (x), F (0)) = d(x, 0) = |x|

Using this in d(F (x), F (y)) = d(x, y) gives us :

|F (x)− F (y)|2 = |x− y|2

=⇒ |F (x)|2 − 2〈F (x), F (y)〉+ |F (y)|2 = |x|2 − 〈x, y〉+ |y|2

=⇒ 〈F (x), F (y)〉 = 〈x, y〉

Therefore F preserves the inner product between vectors in Rn. Now we’ll use this to
show that F is linear. We first claim that for all x, y ∈ Rn, F (x+y) = F (x) +F (y),
i.e. |F (x+ y)− F (x)− F (y)| = 0. Using the fact that F preserves norm and inner
product, we have :

|F (x+ y)− F (x)− F (y)|2

=|F (x+ y)|2 + |F (x)|2 + |F (y)|2 − 2〈F (x+ y), F (x)〉 − 2〈F (x+ y), F (y)〉
+ 2〈F (x), F (y)〉

=|x+ y|2 + |x|2 + |y|2 − 2〈x+ y, x〉 − 2〈x+ y, y〉+ 2〈x, y〉
=|(x+ y)− x− y|2

=0

Therefore F is additive. That F respects scalar multiplication can be proved sim-
ilarly by examining |F (λx) − λF (x)|. Therefore F is a linear map. We showed
earlier that F preserves inner products; this implies that F is an orthogonal linear
transformation. 2

2. Problem (H) Use the Mayer-Vietoris sequence to compute the homology of real
projective n-space RP n.
Solution:
We will use induction on the dimension n to show that
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Hi(RP n) =


Z if i = 0 or i = n is odd
Z/2 if 0 < i < n is odd
{0} if 0 < i < n is even
{0} if i = n is even

Also for each n, homology of RP n in dimensions greater than n is zero. Note that
H0(RP n) = Z by connectedness. We first give the proof for n = 2 and n = 3.

Homology of RP 2 : To show that H1(RP 2) = Z/2 and H2(RP 2) = {0}
we use the Mayer-Vietoris (M-V) sequence. Cover RP 2 by two open sets U and
V defined as follows. RP 2 can be thought of as an identification space obtained
from a disk D2 (the closed “northern hemisphere”) by identifying points on the
boundary S1 via the antipodal map of S1.

Define U to be the “northern hemisphere” minus the boundary, inside of
RP 2. This is an open ball, hence contractible, and its homologies after the zero-eth
one, are all zero.

Define V to be the compliment of a small ball around the north pole, inside
of RP 2. This set is a tubular neighbourhood of the RP 1 sitting inside RP 2 as the
space gotten by doing identifications on the boundary S1 of the original disk. In
particular, V deformation retracts onto RP 1 (which is in fact homeomorphic to
S1), so for purposes of homology V can be treated as RP 1 (i.e. S1).

The intersection U ∩ V is homeomorphic to S1 × I, hence deformation re-
tracts to S1, and for purposes of homology can be treated as S1. Notice however
that this S1 wraps twice around the circle RP 1 described above.

We’re now ready to use the M-V sequence with these sets. We have the
long exact sequence (les):

H2(U ∩ V )→ H2(U)⊕H2(V )→ H2(U ∪ V )
∂−→ H1(U ∩ V )

ψ−→ H1(U)⊕H1(V )→ · · ·
which is

H2(S
1)→ H2(D

2)⊕H2(RP 1)→ H2(RP 2)
∂−→ H1(S

1)
ψ−→ H1(D

2)⊕H1(RP 1)→ · · ·
So we have

0→ 0⊕ 0→ H2(RP 2)
∂−→ Z ψ−→ 0⊕ Z→ · · ·

So we get that H2(RP 2) injects into Z via ∂. Also, by the earlier observation
that the S1 generating U ∩ V wraps twice around the S1 generating V , the map
ψ : Z → Z is multiplication by 2, hence injective. Therefore ker(ψ) = 0. By
exactness, ker(ψ) = im(∂), which implies that the image of ∂ is 0, so H2(RP 2) = 0.
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For H1(RP 2) we look at the following portion of the les :

H1(U ∩ V )
ψ−→ H1(U)⊕H1(V )

φ−→ H1(RP 2)
ρ−→ H0(U ∩ V )

α−→ H0(U)⊕H0(V )

which is

Z ψ−→ 0⊕ Z φ−→ H1(RP 2)
ρ−→ Z α−→ Z⊕ Z

By the definition of the maps in the M-V sequence, α is the map 1 7→ (1,−1),
which is injective. Therefore ker(α) = 0, so im(ρ) = 0, i.e. ρ is the zero
homomorphism. This implies that φ surjects onto H1(RP 2). Therefore
H1(RP 2) = Z/ ker(φ) = Z/im(ψ) = Z/2Z. Also, for dimensions greater
than 2, the M-V sequence implies that the homology of RP 2 is zero, since it is
surrounded by zeros in the les. This completes the proof of the homology of RP 2.

Homology of RP 3 : Analogously to the case of RP 2, we consider RP 3 as
an identification space gotten from D3 by antipodal identification on the boundary
S2. We take the open sets to be U = an open disk neighbourhood of the north
pole, V = a neighbourhood of the RP 2 inside of RP 3 which is the quotient of
the above-mentioned S2. Then U has trivial homology in dimensions bigger than
0, V deformation retracts onto RP 2, whose homology we computed above, and
U ∩ V = S2 × I which deformation retracts onto S2.

Now we have the M-V sequence :

H3(U ∩ V )→ H3(U)⊕H3(V )→ H3(RP 3)
∂−→ H2(U ∩ V )

ψ−→ H2(U)⊕H2(V )→ · · ·
which is

0→ 0⊕ 0→ H3(RP 3)
∂−→ Z ψ−→ 0⊕ 0→ · · ·

Exactness implies that ∂ is an isomorphism, so H3(RP 3) = Z. Next, we have :

H2(U)⊕H2(V )
φ−→ H2(RP 3)

ρ−→ H1(U ∩ V )

which is

0⊕ 0
φ−→ H2(RP 3)

ρ−→ 0

which implies that H2(RP 3) = 0. Finally, we have :

H1(U ∩ V )→ H1(U)⊕H1(V )
f−→ H1(RP 3)

g−→ H0(U ∩ V )
h−→ H0(U)⊕H0(V )

which is

0→ 0⊕ Z/2 f−→ H1(RP 3)
g−→ Z h−→ Z⊕ Z

The map h is given by 1 7→ (1,−1), hence is injective. Therfore the image of g is
zero, i.e. g is the zero homomorphism, which implies that f is surjective. Because
of the 0 at the start of the sequence, f is also injective, hence an isomorphism.
Hence H1(RP 3) = Z/2. Note also that homologies in higher dimensions are zero
by the same argument as for RP 2.
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Homology of RP n Now that we have the base cases, we’re ready to induct
on the dimension. So, let’s suppose the homologies of RP k, k < n, are as claimed.
We need to prove for RP n. Define open sets U , V analogous to the earlier cases.
Then for purposes of homology, U = Dn, V = RP n−1, and U ∩ V = Sn−1.

The M-V sequence gives us :

H1(U ∩ V )→ H1(U)⊕H1(V )→ H1(RP n)→ 0

where the last zero can be explained using the last sequence of the argument for
RP 3, where it’s shown that g is the zero homomorphism. Also, we’re assuming
n > 3, so H1(U ∩ V ) = H1(S

n−1) = 0. So, we have :

0→ 0⊕ Z/2→ H1(RP n)→ 0

which implies that H1(RP n) = Z/2. Next, for 1 < i < n− 1, we have:

Hi(U ∩ V )→ Hi(U)⊕Hi(V )→ Hi(RP n)→ Hi−1(U ∩ V )

which is

0→ 0⊕Hi(RP n−1)→ Hi(RP n)→ 0

since Hi(S
n−1) = Hi−1(S

n−1) = 0. Therfore, Hi(RP n) ∼= Hi(RP n−1), and we get
from the induction hypothesis that Hi(RP n) is Z/2 if i is odd, and it is 0 if i is
even. Lastly, we have the sequence :

0→ Hn(RP n)→ Z→ Hn−1(U)⊕Hn−1(V )→ Hn−1(RP n)→ 0

using the homology of RP n−1 and of Sn−1. If n is odd, then n − 1 is even,
so Hn−1(U) ⊕ Hn−1(V ) = Hn−1(RP n−1) = 0, which implies by exactness that
Hn(RP n) = Z and Hn−1(RP n) = 0. If n is even, n−1 is odd, so Hn−1(RP n−1) = Z,
so the sequence looks like :

0→ Hn(RP n)
α−→ Z β−→ 0⊕ Z γ−→ Hn−1(RP n)→ 0

Because the Sn−1 generating U ∩ V wraps twice around the RP n−1 generating V ,
the map β is 1 7→ (0,−2), which is injective. Exactness then implies that α is
the zero homomorphism, so Hn(RP n) = 0. Also, γ is surjective, so Hn−1(RP n) =
Z/ ker(γ) = Z/im(β) = Z/2Z. Note also that homologies in higher dimensions are
zero by the same argument as for RP 2. This completes the proof of the homology
of RP n. 2
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