Math 601 Homework 7 Solutions to selected problems

1. Problem (E) Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a homeomorphism which preserves distances between points, that is, $d(F(x), F(y))=d(x, y)$ for all pair of points x and y in \mathbb{R}^{n}. Suppose, in addition, that $F(0)=0$, where 0 denotes the origin in \mathbb{R}^{n}. Prove that F is an orthogonal linear transformation.

Solution:

Since $F(0)=0$, we have for each $x \in \mathbb{R}^{n}$,

$$
|F(x)|=|F(x)-0|=d(F(x), 0)=d(F(x), F(0))=d(x, 0)=|x|
$$

Using this in $d(F(x), F(y))=d(x, y)$ gives us :

$$
\begin{aligned}
|F(x)-F(y)|^{2} & =|x-y|^{2} \\
\Longrightarrow|F(x)|^{2}-2\langle F(x), F(y)\rangle+|F(y)|^{2} & =|x|^{2}-\langle x, y\rangle+|y|^{2} \\
\Longrightarrow\langle F(x), F(y)\rangle & =\langle x, y\rangle
\end{aligned}
$$

Therefore F preserves the inner product between vectors in \mathbb{R}^{n}. Now we'll use this to show that F is linear. We first claim that for all $x, y \in \mathbb{R}^{n}, F(x+y)=F(x)+F(y)$, i.e. $|F(x+y)-F(x)-F(y)|=0$. Using the fact that F preserves norm and inner product, we have :

$$
\begin{aligned}
\mid F & (x+y)-F(x)-\left.F(y)\right|^{2} \\
= & |F(x+y)|^{2}+|F(x)|^{2}+|F(y)|^{2}-2\langle F(x+y), F(x)\rangle-2\langle F(x+y), F(y)\rangle \\
& +2\langle F(x), F(y)\rangle \\
= & |x+y|^{2}+|x|^{2}+|y|^{2}-2\langle x+y, x\rangle-2\langle x+y, y\rangle+2\langle x, y\rangle \\
= & |(x+y)-x-y|^{2} \\
= & 0
\end{aligned}
$$

Therefore F is additive. That F respects scalar multiplication can be proved similarly by examining $|F(\lambda x)-\lambda F(x)|$. Therefore F is a linear map. We showed earlier that F preserves inner products; this implies that F is an orthogonal linear transformation.
2. Problem (H) Use the Mayer-Vietoris sequence to compute the homology of real projective n-space $\mathbb{R} P^{n}$.

Solution:

We will use induction on the dimension n to show that
$H_{i}\left(\mathbb{R} P^{n}\right)= \begin{cases}\mathbb{Z} & \text { if } i=0 \text { or } i=n \text { is odd } \\ \mathbb{Z} / 2 & \text { if } 0<i<n \text { is odd } \\ \{0\} & \text { if } 0<i<n \text { is even } \\ \{0\} & \text { if } i=n \text { is even }\end{cases}$
Also for each n, homology of $\mathbb{R} P^{n}$ in dimensions greater than n is zero. Note that $H_{0}\left(\mathbb{R} P^{n}\right)=\mathbb{Z}$ by connectedness. We first give the proof for $n=2$ and $n=3$.

Homology of $\mathbb{R} P^{2}$: To show that $H_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / 2$ and $H_{2}\left(\mathbb{R} P^{2}\right)=\{0\}$ we use the Mayer-Vietoris (M-V) sequence. Cover $\mathbb{R} P^{2}$ by two open sets U and V defined as follows. $\mathbb{R} P^{2}$ can be thought of as an identification space obtained from a disk D^{2} (the closed "northern hemisphere") by identifying points on the boundary S^{1} via the antipodal map of S^{1}.

Define U to be the "northern hemisphere" minus the boundary, inside of $\mathbb{R} P^{2}$. This is an open ball, hence contractible, and its homologies after the zero-eth one, are all zero.

Define V to be the compliment of a small ball around the north pole, inside of $\mathbb{R} P^{2}$. This set is a tubular neighbourhood of the $\mathbb{R} P^{1}$ sitting inside $\mathbb{R} P^{2}$ as the space gotten by doing identifications on the boundary S^{1} of the original disk. In particular, V deformation retracts onto $\mathbb{R} P^{1}$ (which is in fact homeomorphic to S^{1}), so for purposes of homology V can be treated as $\mathbb{R} P^{1}$ (i.e. S^{1}).

The intersection $U \cap V$ is homeomorphic to $S^{1} \times I$, hence deformation retracts to S^{1}, and for purposes of homology can be treated as S^{1}. Notice however that this S^{1} wraps twice around the circle $\mathbb{R} P^{1}$ described above.

We're now ready to use the $\mathrm{M}-\mathrm{V}$ sequence with these sets. We have the long exact sequence (les):
$H_{2}(U \cap V) \rightarrow H_{2}(U) \oplus H_{2}(V) \rightarrow H_{2}(U \cup V) \xrightarrow{\partial} H_{1}(U \cap V) \xrightarrow{\psi} H_{1}(U) \oplus H_{1}(V) \rightarrow \cdots$ which is
$H_{2}\left(S^{1}\right) \rightarrow H_{2}\left(D^{2}\right) \oplus H_{2}\left(\mathbb{R} P^{1}\right) \rightarrow H_{2}\left(\mathbb{R} P^{2}\right) \xrightarrow{\partial} H_{1}\left(S^{1}\right) \xrightarrow{\psi} H_{1}\left(D^{2}\right) \oplus H_{1}\left(\mathbb{R} P^{1}\right) \rightarrow \cdots$
So we have
$0 \rightarrow 0 \oplus 0 \rightarrow H_{2}\left(\mathbb{R} P^{2}\right) \xrightarrow{\partial} \mathbb{Z} \xrightarrow{\psi} 0 \oplus \mathbb{Z} \rightarrow \cdots$
So we get that $H_{2}\left(\mathbb{R} P^{2}\right)$ injects into \mathbb{Z} via ∂. Also, by the earlier observation that the S^{1} generating $U \cap V$ wraps twice around the S^{1} generating V, the map $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$ is multiplication by 2 , hence injective. Therefore $\operatorname{ker}(\psi)=0$. By exactness, $\operatorname{ker}(\psi)=\operatorname{im}(\partial)$, which implies that the image of ∂ is 0 , so $H_{2}\left(\mathbb{R} P^{2}\right)=0$.

For $H_{1}\left(\mathbb{R} P^{2}\right)$ we look at the following portion of the les :

$$
H_{1}(U \cap V) \xrightarrow{\psi} H_{1}(U) \oplus H_{1}(V) \xrightarrow{\phi} H_{1}\left(\mathbb{R} P^{2}\right) \xrightarrow{\rho} H_{0}(U \cap V) \xrightarrow{\alpha} H_{0}(U) \oplus H_{0}(V)
$$

which is

$$
\mathbb{Z} \xrightarrow{\psi} 0 \oplus \mathbb{Z} \xrightarrow{\phi} H_{1}\left(\mathbb{R} P^{2}\right) \xrightarrow{\rho} \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z}
$$

By the definition of the maps in the M-V sequence, α is the map $1 \mapsto(1,-1)$, which is injective. Therefore $\operatorname{ker}(\alpha)=0$, so $\operatorname{im}(\rho)=0$, i.e. ρ is the zero homomorphism. This implies that ϕ surjects onto $H_{1}\left(\mathbb{R} P^{2}\right)$. Therefore $H_{1}\left(\mathbb{R} P^{2}\right)=\mathbb{Z} / \operatorname{ker}(\phi)=\mathbb{Z} / \operatorname{im}(\psi)=\mathbb{Z} / 2 \mathbb{Z}$. Also, for dimensions greater than 2 , the $\mathrm{M}-\mathrm{V}$ sequence implies that the homology of $\mathbb{R} P^{2}$ is zero, since it is surrounded by zeros in the les. This completes the proof of the homology of $\mathbb{R} P^{2}$.

Homology of $\mathbb{R} P^{3}$: Analogously to the case of $\mathbb{R} P^{2}$, we consider $\mathbb{R} P^{3}$ as an identification space gotten from D^{3} by antipodal identification on the boundary S^{2}. We take the open sets to be $U=$ an open disk neighbourhood of the north pole, $V=$ a neighbourhood of the $\mathbb{R} P^{2}$ inside of $\mathbb{R} P^{3}$ which is the quotient of the above-mentioned S^{2}. Then U has trivial homology in dimensions bigger than $0, V$ deformation retracts onto $\mathbb{R} P^{2}$, whose homology we computed above, and $U \cap V=S^{2} \times I$ which deformation retracts onto S^{2}.

Now we have the $\mathrm{M}-\mathrm{V}$ sequence :
$H_{3}(U \cap V) \rightarrow H_{3}(U) \oplus H_{3}(V) \rightarrow H_{3}\left(\mathbb{R} P^{3}\right) \xrightarrow{\partial} H_{2}(U \cap V) \xrightarrow{\psi} H_{2}(U) \oplus H_{2}(V) \rightarrow \cdots$ which is
$0 \rightarrow 0 \oplus 0 \rightarrow H_{3}\left(\mathbb{R} P^{3}\right) \xrightarrow{\partial} \mathbb{Z} \xrightarrow{\psi} 0 \oplus 0 \rightarrow \cdots$
Exactness implies that ∂ is an isomorphism, so $H_{3}\left(\mathbb{R} P^{3}\right)=\mathbb{Z}$. Next, we have :

$$
\begin{aligned}
& H_{2}(U) \oplus H_{2}(V) \xrightarrow{\phi} H_{2}\left(\mathbb{R} P^{3}\right) \xrightarrow{\rho} H_{1}(U \cap V) \\
& \text { which is } \\
& 0 \oplus 0 \xrightarrow{\phi} H_{2}\left(\mathbb{R} P^{3}\right) \xrightarrow{\rho} 0
\end{aligned}
$$

which implies that $H_{2}\left(\mathbb{R} P^{3}\right)=0$. Finally, we have :

$$
H_{1}(U \cap V) \rightarrow H_{1}(U) \oplus H_{1}(V) \xrightarrow{f} H_{1}\left(\mathbb{R} P^{3}\right) \xrightarrow{g} H_{0}(U \cap V) \xrightarrow{h} H_{0}(U) \oplus H_{0}(V)
$$

which is

$$
0 \rightarrow 0 \oplus \mathbb{Z} / 2 \xrightarrow{f} H_{1}\left(\mathbb{R} P^{3}\right) \xrightarrow{g} \mathbb{Z} \xrightarrow{h} \mathbb{Z} \oplus \mathbb{Z}
$$

The map h is given by $1 \mapsto(1,-1)$, hence is injective. Therfore the image of g is zero, i.e. g is the zero homomorphism, which implies that f is surjective. Because of the 0 at the start of the sequence, f is also injective, hence an isomorphism. Hence $H_{1}\left(\mathbb{R} P^{3}\right)=\mathbb{Z} / 2$. Note also that homologies in higher dimensions are zero by the same argument as for $\mathbb{R} P^{2}$.

Homology of $\mathbb{R} P^{n}$ Now that we have the base cases, we're ready to induct on the dimension. So, let's suppose the homologies of $\mathbb{R} P^{k}, k<n$, are as claimed. We need to prove for $\mathbb{R} P^{n}$. Define open sets U, V analogous to the earlier cases. Then for purposes of homology, $U=D^{n}, V=\mathbb{R} P^{n-1}$, and $U \cap V=S^{n-1}$.

The M-V sequence gives us :

$$
H_{1}(U \cap V) \rightarrow H_{1}(U) \oplus H_{1}(V) \rightarrow H_{1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

where the last zero can be explained using the last sequence of the argument for $\mathbb{R} P^{3}$, where it's shown that g is the zero homomorphism. Also, we're assuming $n>3$, so $H_{1}(U \cap V)=H_{1}\left(S^{n-1}\right)=0$. So, we have :

$$
0 \rightarrow 0 \oplus \mathbb{Z} / 2 \rightarrow H_{1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

which implies that $H_{1}\left(\mathbb{R} P^{n}\right)=\mathbb{Z} / 2$. Next, for $1<i<n-1$, we have:

$$
H_{i}(U \cap V) \rightarrow H_{i}(U) \oplus H_{i}(V) \rightarrow H_{i}\left(\mathbb{R} P^{n}\right) \rightarrow H_{i-1}(U \cap V)
$$

which is

$$
0 \rightarrow 0 \oplus H_{i}\left(\mathbb{R} P^{n-1}\right) \rightarrow H_{i}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

since $H_{i}\left(S^{n-1}\right)=H_{i-1}\left(S^{n-1}\right)=0$. Therfore, $H_{i}\left(\mathbb{R} P^{n}\right) \cong H_{i}\left(\mathbb{R} P^{n-1}\right)$, and we get from the induction hypothesis that $H_{i}\left(\mathbb{R} P^{n}\right)$ is $\mathbb{Z} / 2$ if i is odd, and it is 0 if i is even. Lastly, we have the sequence :

$$
0 \rightarrow H_{n}\left(\mathbb{R} P^{n}\right) \rightarrow \mathbb{Z} \rightarrow H_{n-1}(U) \oplus H_{n-1}(V) \rightarrow H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

using the homology of $\mathbb{R} P^{n-1}$ and of S^{n-1}. If n is odd, then $n-1$ is even, so $H_{n-1}(U) \oplus H_{n-1}(V)=H_{n-1}\left(\mathbb{R} P^{n-1}\right)=0$, which implies by exactness that $H_{n}\left(\mathbb{R} P^{n}\right)=\mathbb{Z}$ and $H_{n-1}\left(\mathbb{R} P^{n}\right)=0$. If n is even, $n-1$ is odd, so $H_{n-1}\left(\mathbb{R} P^{n-1}\right)=\mathbb{Z}$, so the sequence looks like :

$$
0 \rightarrow H_{n}\left(\mathbb{R} P^{n}\right) \xrightarrow{\alpha} \mathbb{Z} \xrightarrow{\beta} 0 \oplus \mathbb{Z} \xrightarrow{\gamma} H_{n-1}\left(\mathbb{R} P^{n}\right) \rightarrow 0
$$

Because the S^{n-1} generating $U \cap V$ wraps twice around the $\mathbb{R} P^{n-1}$ generating V, the map β is $1 \mapsto(0,-2)$, which is injective. Exactness then implies that α is the zero homomorphism, so $H_{n}\left(\mathbb{R} P^{n}\right)=0$. Also, γ is surjective, so $H_{n-1}\left(\mathbb{R} P^{n}\right)=$ $\mathbb{Z} / \operatorname{ker}(\gamma)=\mathbb{Z} / \operatorname{im}(\beta)=\mathbb{Z} / 2 \mathbb{Z}$. Note also that homologies in higher dimensions are zero by the same argument as for $\mathbb{R} P^{2}$. This completes the proof of the homology of $\mathbb{R} P^{n}$.

