Diophantine Equations

Diophantus of Alexandria (Ancient Greek: Δ ió申avtoc ó ' $\lambda \lambda \varepsilon \xi a v \delta \rho \varepsilon u ́ c ;$ born probably sometime between AD 201 and 215; died around 84 years old, probably sometime between AD 285 and 299), sometimes called "the father of algebra", was an Alexandrian Greek mathematician ${ }^{[1][2][3][14]}$ and the author of a series of books called Arithmetica, many of which are now lost. These texts deal with solving algebraic equations. While reading Claude Gaspard Bachet de Méziriac's edition of Diophantus' Arithmetica, Pierre de Fermat concluded that a certain equation considered by Diophantus had no solutions, and noted in the margin without elaboration that he had found "a truly marvelous proof of this proposition," now referred to as Fermat's Last Theorem. This led to tremendous advances in number theory, and the study of Diophantine equations ("Diophantine geometry") and of Diophantine approximations remain important areas of mathematical research. Diophantus coined the term пapıoótnc (parisotes) to refer to an approximate equality. ${ }^{[5]}$ This term was rendered as adaequalitas in Latin, and became the technique of adequality developed by Pierre de Fermat to find maxima for functions and tangent lines to curves. Diophantus was the first Greek mathematician who recognized fractions as numbers; thus he allowed positive rational numbers for the coefficients and solutions. In modern use, Diophantine equations are usually algebraic equations with integer coefficients, for which integer solutions are sought. as Lagrange, Legendre, and Gauss. One of the pioneers of elasticity theory, she won the grand prize from the Paris Academy of Sciences for her essay on the subject. Her work on Fermat's Last Theorem provided a foundation for mathematicians out of mathematics, but she worked independently throughout her life. ${ }^{(2)}$ Before her death Gauss had recommended that she be awarded an honorary degree, but that never occurred. ${ }^{[3]}$ At the centenary of her life, a street and a girls school were named after her. The Academy of Sciences established the Sophie Germain Prize in her honor.

$a, b \in \mathbb{N}$
$\operatorname{gcd}(a, b)=$ greatest common divisor of $a+b$ is d sit. $d / a, d / b$ and d is the largest of all numbers with those properties.
How to find?
Stupid Algorithm: Factor a, b; chose largest power of each prime common to both.
Example: $\operatorname{gcd}(60,90)$

$$
\left.\begin{array}{l}
60=2^{2} \times 3 \times 5 \\
90=2 \times 3^{2} \times 5
\end{array}\right] \quad \operatorname{ged}=2 \times 3 \times 5=30 .
$$

Better Method Enclits Algorthn:
Lat $a>b$. if not just switch them.
Write $a=q, b+r_{1}$
We know we can do this fo $q_{1}, r_{1} \in \mathbb{Z}$ More over we can always $\quad q_{1} \geqslant 0, r_{1} \geqslant 0$. take $r_{1}<b$. If not, just increase q_{1}.
Now write

$$
b=q_{2} r_{1}+r_{2}
$$

$$
\begin{aligned}
& r_{1}=q_{3} r_{2}+r_{3} \\
& r_{2}=q_{4} r_{3}+r_{4} \\
& \vdots \\
& r_{n-2}=q_{n} r_{n-1}+r_{n} \\
& r_{n-1}=q_{n+1} r_{n}+0
\end{aligned}
$$

Claim $r_{n}=\operatorname{gcd}(a, b)$.
First $r_{n} \mid a$ and $r_{n} \mid b$
prof since $r_{n-1}=q_{n+1} r_{n \text {, }}$ $r_{n} \mid r_{n-1} . \quad N \Omega$
$r_{n-2}=q_{n} r_{n-1}+r_{n}$ and $r_{n} \mid r_{n-1}$ and $r_{n} \mid r_{n}$ so $\quad r_{n} \mid r_{n-2}$.
By induction, $r_{n}\left|r_{n-1}, r_{n}\right| r_{n-2} ; \cdots, r_{n} \mid r_{1}$

$$
\begin{array}{ll}
b=q_{2} r_{1}+r_{2}, & r_{n}\left|r_{1}, r_{n}\right| r_{2} \Rightarrow r_{n} \mid b . \\
a=q_{1} b+r_{1}, & r_{n}\left|b, r_{n}\right| r_{1} \Rightarrow r_{n} \mid a .
\end{array}
$$

So r_{n} is a common dives.

Let $\quad d \mid a$ and d\|b.
Then since

$$
a=q_{1} b+r_{1}, r_{1}=a-q b
$$

so $\quad d \mid r_{1}$.

$$
b=q_{2} r_{1}+r_{2}, r_{2}=b-q_{2} r_{1}
$$

and d / b and $d\left|r_{1} \Rightarrow d\right| r_{2}$

$$
\begin{aligned}
& r_{1}=q_{3} r_{2}+r_{3}, r_{3}=r_{1}-q_{3} r_{2} \\
& d\left|r_{1}, d\right| r_{2}=d \mid r_{3}
\end{aligned}
$$

B_{y} 'induction

$$
\begin{aligned}
& d|a, d l b, d| r_{1},-,\left.d\right|_{r_{n-1}} \\
& r_{n-2}=q_{n} r_{n-1}+r_{n}, r_{n}=r_{n-2}-q_{n} r_{n-1}
\end{aligned}
$$

So $d \mid r_{n}$. Hence any common divisor of a and b divides r_{n}, so r_{n} is the greatest common divisor.
By the way, we knots the process terminates since $a>b>r_{1}>r_{2}>r_{2}>\ldots>r_{n}>0$
Fact $r_{k+2}<\frac{r_{k}}{2}$
proof $r_{k}=q_{k+2} r_{k+1}+r_{k+2}$

If $r_{k+2} \geqslant \frac{r_{k}}{2}$, then

$$
\begin{aligned}
r_{k} & =q_{k+2} r_{k+1}+r_{k+2}>q_{k+2} r_{k+2}+r_{k+2} \\
& \geqslant q_{k+2} \frac{r_{k}}{2}+\frac{r_{k}}{2} \geqslant r_{k}
\end{aligned}
$$

So $\quad r_{k}>r_{k}$ a contradiction.
Hence $r_{h+2}<\frac{r_{k}}{2}$. So every
second titration the remainder decreases by a factor of 2 . Hence the process will end after $2 \log _{2} b$
The 2 is because its only every second iterate that decreases by a fuctro of 2 . $\log _{2}$ because of this factor of
2. $2 \log _{2} b=2 \log _{2} 10 \log _{10} b$

Using the change of base formukafer logarithms: $\log _{a} x=\frac{\log _{b}(x)}{\log _{b}(a)}$

$$
7<2 \log _{2} 10<8
$$

