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Topologie/Topology

Equivariant bicycles on singular spaces

Paul BauM and Jonathan Brock

Abstrac( — We give a geometric description of the equivariant Kasparov groups KK (X, Y) for
Thom-Mather stratified spaces X and Y. This generalizes a theorem of Connes and Skandalis.

Bicycles équivariants sur les espaces singuliers

Résumé — Nous donnons une réalisation géométrique du foncteur bivariant équivariant de Kasparov
KK (X, Y) pour les espaces stratifiés de Thom-Mather. Cette réalisation généralise un théoréme de
Connes et Skandalis.

Version francaise abrégée — Soient X et Y deux espaces stratifiés au sens de Thom-
Mather [7]. Nous définissons une K-théorie bivariante KK (X, Y). Cette théorie est cova-
riante en X et contravariante en Y. Pour construire le groupe KK (X, Y) on introduit la
notion de cycle bivariant, que nous appelons bicycle, sur (X, Y). Il s’agit d’un quadruple
(Z, E, f, g) tel que:

1. Z est un espace stratifié.

2. E est un fibré vectoriel complexe sur Z.

3. f:Z - X est une application continue et propre.

4. g:Z - Y est une application continue et non singuliére normalement [6] dont le fibré
normal posséde une structure Spin‘.

Pour X et Y fixés on munit la classe de tous les bicycles d’une relation d’équivalence
tout a fait analogue a celle de [1]. L’ensemble des classes d’équivalence est alors un groupe
abélien et C’est le groupe KK (X, Y). Notre résultat principal donne, en utilisant la transversa-
lit¢ pour les espaces stratifiés, une construction simple et directe du produit d’intersection

KK (X, Y) ® KK (Y, W) - KK (X, W).
¥4

L’opérateur de Dirac détermine un isomorphisme de groupes abéliens
KK (X, Y) - KK (G (X), Co (Y))

qui transforme notre produit d’intersection en celui de Kasparov.

Soit maintenant G un groupe de Lie compact qui opére sur X et Y. Nous adaptons notre
méthode a la situation équivariante, ce qui donne le groupe abélien KK (X, Y). Dans ce
cas notre définition du produit d’intersection

KK (X, )® KK (Y, W) - KKg (X, W)
z

utilise non seulement la transversalité, mais aussi, et surtout, la périodicité de Bott considérée
géométriquement. Ainsi le systéme des groupes KK (X, Y) apparait comme le cadre naturel
de la théorie d’intersection (topologique) équivariante.

1. InTRODUCTION. — In [1] the first author and R. Douglas gave a geometric realization
of K-homology. This approach to K-homology and K-theory was further developed in
two papers of Connes and Skandalis ([2], [3]) in which they used bicycles (i.e. bivariant
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cycles) to construct elements of the Kasparov group KK (C, (X), C,(Y)). Connes and
Skandalis referred to bicycles as correspondences. They considered the case when X
was a locally compact Hausdorff topological space and Y was a manifold. The main
point about bicycles is that the Kasparov product has a simple geometric description. In
[2], they organized the collection of bicycles into a group KK (X, Y), constructed a map

r:KK (X, Y) - KK(Co (X), Co (V)

and stated that it was an isomorphism. In this Note we outline the proof of this
isomorphism together with two natural generalizations.

First, we allow Y to be a stratified space in the sense of Whitney or Mather [7]. For
concreteness we have stated all theorems for a stratified space with Thom-Mather data
since it is proved in [7] that a Whitney stratified space can be equipped with such
data. To generalize to this case we rely heavily on Goresky’s n-fiber condition and the
notion of a normally non-singular map f: Z — Y between stratifed spaces. We generalize
the definition of f! to the case of a Spin® normally non-singular map and prove the
fundamental formula f;!® f,!=(f,°f;)! It is precisely the notion of normally non-

Y

singular map which makes this program possible. As a spin off we obtain geometric
realizations of cobordism groups Q*(Y), compare [8], [6] and of bivariant cobordism
groups QOQ*(X, Y). These realizations lead immediately to equivariant versions of
the theories KK (X, Y) and QQ¥ (X, Y). The crucial difference between KK% (X, Y)
and QQ¥(X,Y) is that Bott periodicity provides a replacement for transversality
in KK&(X,Y) and no such construction is apparent for QQ¥ (X, Y). Therefore
QQ¥ (X, Y) is considerably more difficult to compute. Another way to think of this is
that KK¥ (X, Y) is the appropriate setting for (topological) equivariant intersection

theory. (

We thank A. Connes, M. Goresky and R. MacPherson for very helpful discussions.

2. STRATIFIED SPACES AND NORMALLY NON-SINGULAR MAPS. — Throughout, by a
stratified space Y we will mean a Thom-Mather stratified space ([7], [9]). Thus Y is

partitioned into strata Y= \U S and equipped with control data (Ts, mg, ps). Let
Se &y

T (e)={xeTS |p(x)<e}. If a compact Lie group G acts continuously on Y, it should
act smoothly on each strata, the stratification should be G-invariant and the control
data compatible with the group action. A stratified G-subspace X <Y is a locally closed
G-subspace which is also stratified such that each stratum S e %y is contained in a unique
stratum of Y. A stratified subspace satisfies the n-fiber condition [6] if for each stratum
Se %y, there exists an €>0 such that

M XNTse)=mns ' (XNS)N Ts(e).

A G-map f: X — Y between stratified spaces is stratified if for each stratum Se %y there
is a stratum S'e ¥y so that f:S — S’ is smooth. fis called controlled if for the strata S
and S’ above, there is an &>0 so that for peTg(e) and f(p)eTs (¢) one has
ng f(p)=fns(p). f is called a normally non-singular inclusion of condimension k if f
embeds X in Y as a n-fibered stratified G-subspace such that for each xeX contained
in a stratum Se %y with f (x)eS'€ ¥y, one has dim (S')—dim(S)=k. And in general f
is called a normally non-singular map of codimension k if there is a factorization of f

) fXSYxrihy
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where i is a normally non-singular inclusion of codimension n+k and p is the obvious
projection, R" is equipped with a linear action of G. The key property of normally
non-singular maps is that they have normal bundles.

LemMma 2.1. — 1. If i: X > Y is a codimension k normally non-singular inclusion, then
there exists a G-vector bundle v (i) over X of rank k and an equivariant embedding
@:v (i) > Y mapping v (i) onto an open neighborhood of X.

2. If f: X - Y is a normally non-singular map of codimension k, then the normal bundle
v (i) is unique up to stable isomorphism for any factorization (2).

If f: X —> Y is a normally non-singular G-map of codimension %, a Spin® structure of f
will be a G-equivariant Spin® structure [3] on the normal bundle v(i) for some
factorization (2) of . For now, the factorization (2) will be part of the data of the Spin®
structure. This will be cut down to size by the cobordism relation. Let f;:
X;—Y,j=0,1, be two normally non-singular Spin° maps of codimension k. Let

i p;
Xj—J>Y><R"i—J>Y, j=0, 1 be the two factorizations in the definition of the Spin°
structure. f, and f; are called cobordant if there is a normally non-singular G-

inclusion of codimension N+k with Spin® structure, W;YXRNX[O, 1] so that

X;=i"'(YxR¥x {j}) for j=0, 1 and the map X;=i"*(Y xRV x {j}) > Y x RN should
identify with the extension of i; by embedding R" into RN as a subspace. Then v (i) |x,-
is canonically isomorphic to v (i;)@g~-». We require that the Spin® structure on v (i) |x,-
be isomorphic to that on v (i;) @gN-n;.

3. KK (X, Y)anD f1. — Let f: X — Y be a Spin® normally non-singular map. Factor
f as (2) and let S be the bundle of spinors defining the Spin® structure on v(i). We

define f! by first defining i! for embeddings i and p! for projections p. Our definition
of i! and p! is the same as in [2]{ and [3], pp. 1153-1154 where they call them i, ! and

P! Nowsetfl=i! ® pleKKE(Cy(X), Co(Y)).

Co (Y xR™)
Suppose f,: X, — X, and f;:X; - Y are codimension k, and k, resp. normally non-
singular Spin® maps with factorizations

ig Po
Xo—= X XR" > X,

31 131
X 2> YXR15Y
and Spin‘ structures S, and S, on the normal bundle v (i;) and v(i;). Then f, °f, has a
factorization

ig iy xId P
KXo X; XxR"— Y xR0 5 Y

as pei where i=(i; XId)i,. This induces a Spin° structure on the normal bundle
v(i). Hence f, °f, becomes Spin‘.
THEOREM 3.1. — For f, and f, as above we have

fifadi=f! & fi)

Co (X1)

One shows the theorem is true for compositions of normally non-singular inclusions
and then for the composition of p, and p;. Then the theorem follows from-the
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LEMMA 4.2 :
Po! ® i!=(, xId)! ® p!

Co (X1) Co (Y xR0+ 1)

as elements of KK (C, (X; X R™), C, (Y X R™)).

Let X and Y be stratified G-spaces. A G-bicycle from X to Y is a quadruple (Z, E,
£, g) where Z is a stratified G-space, E is a complex G-vector bundle on Z, f:Z - X is a
continuous and proper G-map and g:Z—Y is a normally non-singular Spin
G-map. The codimension of g will be called the codimension of the bicycle. In
complete analogy with [1] define an equivalence relation on bicycles generated by the
following three moves.

1. Cobordism. — (Z,, Eq, fo, &o) is cobordant to (Z,, E,, f;, &) if there is a bicycle
(Z, E, f, g from X to Yx][0, 1], so that g is a cobordism between g, and g; and
flotxin=/fpi=0, 1 and Efj-1 v u(j =E;.

2. Direct sum. — (Z, E,®E,, f, 8)=(Z, E,, f, ) U (Z, E,, 1, 8)-

3. Vector bundle modification. — This is carried out as in [1] Section 10 except that
we must ensure that the space we end up with is stratified. Let F be a real G-vector
bundle on Z. It is called controlled if there is control data on F, (Ts, 7ts, ps)se &, (F has
the same set of strata as Z) so that the vector bundle projection of F is a controlled
map. This is no restriction on the vector bundle. If (., .) is a metric on F, it is
called controlled if { ., . )| is a smooth metric for each stratum S and for each stratum
there is an £>0 so that {e,, e, )={mge,, nge. ) for e,, e.e€Ts(e). Given a controlled
invariant metric on a controlled vector bundle, the sphere bundle S (F) has a natural set
of control data. Hence as in [1] we let F be an even dimensional Spin° vector bundle
over Z with a controlled metric on F®1,. Set Z=S(F®1,) and let F be the complex
vector bundle on Z with p,(F)=1;, p:Z — Z is the natural projection. Then the third
part of the equivalence relation is

(Z,E, f, 8)=(Z, FQp*E, f-p, g°p).

Denote by KK (X, Y) the group defined by imposing this equivalence relation on all
G-bicycles from X to Y and defining addition by disjoint union. KKg (X, Y) inherits a
Z/2 Z grading from the parity of the codimension of the bicycle.

Remark. — To define groups QQ¥ (X, Y) one forgets about the bundle E and parts 2
and 3 of the equivalence relation.

4. THE PRODUCT IN THE TRANSVERSE CASE. — In this section we show that the geometric
form of the Kasparov product described in [3], carries over to the stratified case. Define
a map p:KKg (X, Y) - KK (Co (X), Co(Y)) by

R(Z, E,. 1, 9=/, ((B) ® gh=[fI®(E)®g!
Co (2) z VA
where (E)e KK (C,(Z), C,(Z)) corresponds to the Kasparov bimodule (&, 0) where &
is the Hilbert module completion of C,(Z, E) under the obvious C,(Z)-valued inner
product, and [f] is the obvious Kasparov module coming from a proper G-map.

Let Eq=(Zo, Eo, fo» o) be a bicycle from X to Y and E,=(Z,, E,, fi, g;) 2 bicycle

from Y to V. Assume f; is a controlled map. g, and f, are said to be transverse if

- Al io . . d
given the factorization Z, — Y xR” of g, where i, is a Spin° normally non-singular
inclusion, one has that f,=f, xId:Z, X R" - Y x R” is transverse to i,(Z,) in the sense
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of stratified spaces. (This can be stated without appealing to a factorization.) Now
form f;*(i,(Z,)). This is homeomorphic to Z, X yZ, and by [6], Proposition 5.2, the

inclusion £ (iy (Z,)) - Z, xR" is a normally-non-singular inclusion. Consider the dia-
gram
ZoXyZy=ZoX yxgnZi XR"

VA

q1 3
3) Z Z,xR"

o Y xR” 1

Then g v(ip)=v(G,).- So v(g,) is naturally Spin‘. Thus we may form g, =p°g,. Let
E=(Z, E, f, g) where Z=Zy %y, pnZ; XR", E=q§ E,®qTE,, f=fo°qo and g=g,°¢;.
E is called the composition of the bicycles E, and E, and is denoted E,°&;.

THEOREM 4.1. — For the G-bicycles E, and Z, as above, one has
HEo) ® HED=R(E(°Ey).
Co (V)

THEOREM 4.2. — Suppose E,=(Z;, E;, f;, g;), j=0, 1 are two G-bicycles from X to Y
which are cobordant. Then p(E,)=p(E,) in KKg(Cy(X), Cq (Y)).

Remark. — The usual equivalence relation put on orientations is subsummed in our
cobordism relation (see Quillen [8]). One could have imposed this relation on orientation
from the beginning.

Prorosition 4.3. — 1. If E;.=(Z;, E,;, f;, g), i=0, 1 are two bicycles from X to Y
which are cobordant then p(Z,)=p(E,).
2. For any F as in the definition/ of vector bundle modification,

R(Z FQp*(E), f-p, g°p)=n(Z E, 1, g).

3. w(B) is well defined. That is, it only depends on the equivalence class of E in

KK (X, Y).

THeoREM 4.4. — n:KKE (X, Y) - KKE (C, (X), Cy(Y)) is an isomorphism.

The proof proceeds in several steps. The first is to prove the isomorphism in the case
where X is a point. This is done by explicitly constructing an inverse to p by using a
clutching construction. The rest of the theorem is proved by establishing appropriate
functorial properties of KK (., Y) as a functor in the first variable.

5. THE PRODUCT IN THE NON-TRANSVERSE CASE. — Here we show how to use Bott-
periodicity instead of transversality to obtain the Kasparov product. Let E,=(Z,, E,,
fos 8o) be a bicycle from X to Y and E, =(Z,, E,, /1, g,) 2 bicycle from Y to V. Consider

a factorization of g, as Z, 5 Y xR” where i is a normally non-singular Spin® inclusion
of codimension k and assume k is even. Let v(i) be the normal bundle and
@:v()) > Y xR" an equivariant embedding as a tubular neighborhood. Equip v (i)
with a controlled invariant metric. v (i) has a Spin‘-structure so that we may perform
vector-bundle modification with respect to v(i). Let (Z,, F®p* (Eo), f°p, g°p) be the
modified bicycle. We will now alter the map ge°p to obtain an equivalent bicycle
but which has good transversal properties. Consider the one-parameter family of maps
Jr S(v()®1z) > Y XR" given by j,(, x)=¢(t.0). For some value of 7, ¢, Jro 18
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transverse to f=fxId:Z, xR"— Y xR", while jo=g°p. Let E, be the G-bicycle
(Zo, F®p*(Ey), fop, Jio)- We may now carry out the Kasparov product as before.

This allows one to define equivariant intersection numbers. For example, let V be a
complex manifold with a G-action. Let X and Y denote invariant smooth
subvarieties. Then we may form the bicycles 2= (X, 1y, p, i) and ® =(Y, 1y, i, p) where

p is the map to a point and i is the inclusion into V. By forming the product Z-® we
" arrive at an element of KK (pt., pt.)=R(G) which is the intersection number.

1. If X and Y intersect transversally and in complementary dimension, then
E°®=m.1 where m is the ordinary intersection number of X and Y and 1 is the trivial
one dimensional representation of G.

2. Let X=Y=p be a fixed point of the action. Then E-@=Y) (—1)'A*(TS(M))

where Tg(M) is the complex cotangent space. In this case we see how E-® is an
obstruction to equivariantly pulling X and Y apart.
There is an explicit excess intersection formula in the spirit of [5] and [4].
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