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Abstract

We develop a simple theory of André—Quillen cohomology for commutative differential graded
algebras over a field of characteristic zero. We then relate it to the homotopy groups of function
spaces and spaces of homotopy self-equivalences of rational nilpotent CW-complexes. This puts
certain results of Sullivan in a more conceptual framework.
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1. Introduction

André—Quillen cohomology is a cohomology theory for commutative algebras origi-
nally introduced in [1,15]. It was subsequently generalized to cover simplicial algebras
over operadgd8], differential gradedE-algebras[14], and commutativeS-algebras
[2].

One of the purposes of the present paper is to give a simple and direct treatment
of the André—Quillen cohomology in the category of commutative differential graded
algebras (dga’s) over a field of characteristic zero. This is done in SeztiOnir initial
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definition of André—Quillen cohomology of a dgawith coefficients in the differential
graded (dg) moduleM over A is via an explicit cochain compIeK?;Q(A, M) similar

to the one introduced if10]. We then produce various equivalent characterizations
of André—Quillen cohomology, introduce the Gerstenhaber brack&t‘;ta'(A, A) and
show its homotopy invariance. In this connection we mention the recent géper
where analogues of some of our results were proved in the context of Hochschild
cohomology.

In Section3 we apply the developed techniques to computing the homotopy groups of
function spaces. (We are dealing witinpointedspaces, however our machinery could
be easily adapted to the pointed situation as well.) In particular, we are concerned with
the group hAutX) of homotopy classes of homotopy self-equivalences of a nilpotent
CW-complex X. A well-known theorem of Sulliva{18] and Wilkerson[20] asserts
that under suitable finiteness assumptions [iXutis an arithmetic group, that is,
commensurable to the group of integer points of some algebraic group®vém
important step is to show that the group h&Xg) is isomorphic to the group of
Q-points of an algebraic group. Hetég denotes thaationalization of the spaceX,

i.e. its localization with respect to the homology thedify(—, Q).

We reprove this result and identify the Lie algebra of this algebraic group. It turns
out to be isomorphic toLI,EQ(A*(X),A*(X)), the zeroth André—Quillen cohomology
of the Sullivan—de Rham algebra of with coefficients in itself. Moreover, the Lie
bracket corresponds to the Gerstenhaber brackeH,@(A*(X), A*(X)).

We also consider the question of computing the higher homotopy groups of a function
spaceF' (X, Y) for two rational spaceX andY. The answer is again formulated in terms
of André—Quillen cohomology associated to the Sullivan—de Rham mode{saod Y.

This result was hinted at ifiL.3].

There has been some previous work on the relation between spaces of automorphisms
of rational spaces and derivations. It was described already in the original paper of
Sullivan [18] and has been described in the paper of Schlessinger and StikHeff
Tanre[19] describes models for AgX) and BAuUtX).

The computation of the rational homotopy type of function spaces was realized for
the first time by Haefligef9].

2. André—Quillen cohomology of commutative differential graded algebras

Let C denote the category of commutative differential graded algebras loweot
necessarily connected. Hekes a field of characteristic 0. The differential is assumed
to raise the degree by one. Thei admits a structure a closed model category as
follows:

e weak equivalences are maps which induce an isomorphism on cohomology groups;

e fibrations are surjective maps;

e cofibrations are the maps which have the left lifting property with respect to acyclic
fibrations.



20 J. Block, A. Lazarev/Advances in Mathematics 193 (2005) 18-39

That C is a closed model category is proved in the case of connected dg43.in
The general case is due to Hini¢hl], who proved it in the still greater generality of
algebras over an operad.

Let us describe the cofibrant objects ¢n First consider the operation of glueing
cells to a dga (also called the Hirsch extension). Relbe a dga and/ be a graded
vector space. Letf: V — Z*(A) be a linear map of degree 1 fro to the space
of cocycles ofA. Then define a new dgd » whose underlying graded vector space is
A ® AV. Here we denoted, following tradition, bV the free graded commutative
algebra on the vector spatk The differential onA is the old differential and the one
onV is given by the magd. Then Ay is said to be obtained frorA by glueing a
(generalized) cell. Observe that; is a pushout ofA by a free commutative algebra
which justifies the name. A dga obtained from the trivial dgés called acell dga.
Any cell dga is cofibrant and any cofibrant dga is a retract of a cell dga.

Now consider the catego-mod of dg modules over a dg&a This is also a closed
model category where fibrations are surjective maps. Then a graded derivatidn of
with values inM of degreed is a map¢é: A — M of degreed which satisfies the
Leibniz condition:

E(b1ba) = E(bD)ba + (—1)4P1lb1E(by).

The set of all derivations form a complex, in fact a Agnodule Det (A, M).
Associated to a dga is the dg module of its Kahler differential®,4. It is defined
in the usual manner a@4 := I/12 wherel is the kernel of the multiplication map

A® A — A. ltis a standard fact that there is an isomorphism ofAdignodules:

Hom’, (24, M) = Der*(A, M).

Let us now introduce the derived version@} also called theAndré—Quillen homology
of A. First recall that the (homological) Hochschild complexfofwith coefficients in
itself is defined as the complex

Ci(A,A) = {A <« A®? «— )

with the standard bar differentiat’, (A, A) is in fact itself a differential graded algebra
with respect to the shuffle product, sindas graded commutative. Sinceis a dga this

is in fact abicomplex (The Hochschild differential lowers degree while the differential

of A raises degree. Thus the total degree in the bicomplex is the difference of the two.)
We will make use of the truncated version 6f(A, A) denoted byC.(A, A). This

is the same complex aS,(A, A) but starting withA®2. SinceA is commutative the
complexC.(A, A) splits off C,(A, A) as a direct summand.

Definition 2.1. The André-Quillen comple>C*AQ(A, A) of a dgaA is the quotient
complex of C«(A, A) by the subcomplex of decomposables, i.e., those elements which
could be represented as shuffle products of two or more elements(ih, A).
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Remark 2.2. This complex (shifted) was defined by Harrisfi®] in the case whew\

is a usual (ungraded) algebra. Its homology is also called the Harrison homoldgy of

It is well known that in characteristic zero case the shifted Harrison homology agrees
with the André—Quillen homology defined by means of simplicial resolutions.

Theorem 2.3.Let A be a cofibrant dga. Then there is a quasi-isomorphism of dg
A-modules

Qa4 ~ CIR(A, A).
Proof. Consider the mapf : A®3 — A®2:
fia®b®cr> ab®c—a® be+ (—1)1a+PDlcleg @ p.
Clearly, Imf = Q4. There results a map of dg modules
CIR(A, A) > Q4

and we want to prove that this map is a quasi-isomorphism for a cofibrant commutative
dgaA.

Without loss of generality, we assume thatis constructed fronk by a series of
Hirsch extensions. This giveA a filtration for which the associated graded algebra is
simply the free commutative algebra on some set of generators with zero differential.
This filtration lifts to 24 and CfQ(A, A) so that the canonical maﬁfQ(A, A) — Qyu
is a filtered map. Since it is clearly a quasi-isomorphism i6 free commutative with
vanishing differential we conclude that the map is a quasi-isomorphism on the level of
associated graded modules, therefore it was a quasi-isomorphism to begin with.

Now let us turn to the functor of derivations and its derived version.Nldte a dg
module over a dg# and denote by the cofibrant replacement @ ThenM is also
a dg A-module and we define the derived functor of derivationsAofvith values in
M as Def (A, M). (Strictly speaking, we have not set up things so that it is a derived
functor; Der is not even a functor.) We have

Der*(A, M) = Hom, (25, M) ~ Hom,(CAR(A, A), M).

The complex Horﬁ(CfQ(A,A),M) embeds as a subcomplex into the truncated
Hochschild complex

C*(A, M) := Hom, (C4(A, A), M)

consisting of those cochains which vanish on the shuffle products. (A shifted version
of this complex is commonly called the Harrison cohomology complexAaoivith



22 J. Block, A. Lazarev/Advances in Mathematics 193 (2005) 18-39

coefficients inM.) We denote this complex b¢,§Q(A,M) and its cohomology by
H/;*\‘Q(A, M). Therefore we proved the following

Theorem 2.4. The cohomology of the complé);*gQ(A, M) is isomorphic to the coho-

mology of the differential graded modulBer* (A, M) where A is a cofibrant replace-
ment of A

Corollary 2.5. Let A be a cofibrant dga and M is a dg A-module. Then there is a
spectral sequencéI;Q(H*(A), H*(M)) = H,_’(Q(A, M).

Thus, we have two ways to compute the André—Quillen cohomology of aAdgih
values in a dgA-module M. The first is to replacé with its cofibrant approximation
and take its derivations iM. The second is via the functorial compl@;f\Q(A, M).

The method via the comple@;Q(A, M) is better suited for theoretical purposes; in
particular it gives rise to the spectral sequence as above. Another useful property of
the complexC;;Q(A,M) is that it is a direct summand of the Hochschild complex.
This is something that is not seen from the point of view of the derived functor of the
derivations.

Derivations also admit the following useful interpretation in terms of square-zero
extensions. LeA be a dga andM be a dgA-module. Denote byl x M the dga which
is isomorphic as a complex ta & M with multiplication defined as

(a1, m1)(az, mp) = (a1az, agm2 + mia).

We will call AxM the square-zero extensioof A by M. The dgaAx M is supplied
with a dga map intdA which is simply the projection onto the first component. We can
thus viewAx M as an object in thevercategoryof A, i.e., the category whose objects
are dga’sB supplied with a magpg : B — A and morphisms are obvious commutative
triangles. We will denote this overcategory By. It inherits the structure of a closed
model category fron€ so that a morphism i€, is a cofibration if it is so considered
as a map irC. Note thatA is also an object irC4 in an obvious fashion.

The associatiolM~»Ax M is a functor A-mod — Cy4. It clearly preserves weak
equivalences and therefore lifts to a functor between the corresponding homotopy
categories.

Let B be an object inC4 which we could assume to be cofibrant without loss of
generality. Then am\-module M has a structure of 8-module via the structure map
¢ep : B — A. An elementary calculation shows that a derivatiBn— M is nothing
but a mapB — AxM in C4. Furthermore, we have the following proposition:

Proposition 2.6. There is a natural isomorphism
HRo(B. M) = [B, AxM]g,.

where[—, —]¢, denotes the set of homotopy classes of mapS,in
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Proof. The mapb — b ®1—-1® b from B —- B ® B can be considered as a
map B — I wherel is the kernel of the product map ® B — B. Composing this
map with the projection — /1> = Qp we get a mapdp : B — Qp, known as
the universal derivationof the dgaB. (It is standard to check that this is indeed a
derivation). Denoting by{—, —]1-mod the set of morphisms in the homotopy category
of B-mod we get a natural transformation

HRo (B, M) = [Qp, M]p-mod > [B. AxM]c, 1)
which associates to a homotopy class of a nfaff2g — M the composition

1.d .
(—>B)B|><QB (83—>f)A><M.

B
To check that the map ofl) is an isomorphism consider the functérwhich associates
to a complexN the symmetric algebré&(N). The functorS is left adjoint to the
forgetful functor from dga’s to complexes and this adjunction passes to homotopy
categories. Now it is easy to see that the map of 1 is an isomorphin=fS(N).
The general case follows by virtue of the following canonical split coequalizer which
exists for any dgeB:

S°B—=SB — B. O

Remark 2.7. On a technical note, observe that the projectiaxM — A is a
fibration from which it follows thatAx M is a fibrant object inC4. Therefore the
set[B, AxM]c, does represent the set of morphisms in the homotopy categafy.of

The next thing we are going to describe is Berstenhaber brackedn the André—
Quillen cohomology. It turns out that for a dga the complexC;*‘\Q(A,A) admits
the structure of a dg Lie algebra. The most conceptual way to describe it is due to
Schlessinger and Stashg6] which we will now recall.

Let CA be the cofree Lie coalgebra & It could be described as the quotient of the
reduced tensor algebf@A . = ea;?ilA@ by the image of the shuffle product. The usual
bar differential descends froriA; to CA making it an acyclic Lie coalgebra. Then
C;Q(A,A) is naturally identified with the space Codéf A, CA) of coderivations
of the Lie coalgebraCA See the appendix for background on Lie coalgebras and
coderivations. Moreover, Cod®gIC A, CA) is naturally a dg Lie algebra with respect to
the commutator bracket which we will call the Gerstenhaber bracket since it is a direct
analogue of the bracket introduced [if] on the Hochschild complex of an algebra.

On the other hand, André—Quillen cohomologyfofould be described as D&#, A)
where A is the cofibrant approximation & This gives another structure of a graded
Lie algebra onH:\Q(A, A). The following result shows that these two structures coin-
cide, and, moreover are invariants of the weak homotopy typA. of
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Theorem 2.8. (1) For two weakly equivalent cofibrant dga A and B the dg Lie
algebrasDer*(A, A) and Der*(B, B) are quasi-isomorphic

(2) for two weakly equivalen{not necessarily cofibraptdgas A and B the dg Lie
algebrasCodef(CA, CA) and Codef(CB, CB) are quasi-isomorphic

(3) for a cofibrant dga A the dg Lie algebreBer*(A, A) and Codef(CA, CA) are
quasi-isomorphic

Proof. The main problem is, of course, that DeA, A) is not functorial with respect

to A. To overcome this difficulty we use the properties of closed model categories.
For part (1) letf : A — B be a weak equivalence between two cofibrant dga’s.
First assume that is a fibration. Then there exists a right splitting B — A so

that fog = idg. Then define the map of dga’s: E®) — End(A) by assigning

to a maps: B — B the mapgoso f. The conditionfog = idg ensures that this
map respects composition of endomorphisms. It follows that we have a map of dg
Lie algebrash : Der*(B, B) — Der*(A, A) together with the commutative diagram of
complexes:

Der(A, A) Der(B, B)

~

Der(A, B)

Here the southeast arrow and the northeast arrows are indudeahbly respectively.
It follows that h is a quasi-isomorphism.

Similarly if f: A — B is an acyclic cofibration then it admits a left splittigg B —

A so thatgo f = idgy and we have a map of dg Lie algebras O&, B) —
Der*(A, A). In the general case we use the presentatiorf e a composition of
a cofibration and a fibration.

The argument for part (2) is more difficult, although the idea is the same. The most
conceptual way is to introduce a closed model category structure on dg Lie coalgebras
and notice that for a dga the dg Lie coalgebr&A is a fibrant—cofibrant object. The
corresponding result for dg coalgebras is due to Hifit2y.

While there is little doubt that this could be done a detailed proof would require
rewriting much of Hinich’s paper (with appropriate modifications). Since we do not
need the full strength of the model category structure we give an alternative proof here
which is of some independent interest. ~

Let f:A — B be a quasi-isomorphism between two dga’'s and denotef lipe
induced map of dg Lie coalgebra8A — CB. Note that f is a quasi-isomorphism.
Moreover, note thaCA and CB have filtrations inherited from the tensor coalgebras
and f is afiltered quasi-isomorphism, that is it induces a quasi-isomorphism on each
graded component.



J. Block, A. Lazarev/Advances in Mathematics 193 (2005) 18-39 25

We claim thatf could be factored as

g h
CA —— D —— (B,

where

both mapsg and’ are filtered quasi-isomorphisms of dg Lie coalgebras;
D is a dg Lie coalgebra that is free as a Lie coalgebra;

the mapg : CA — D admits a filtered left inverse;

the maph : D — CB admits a filtered right inverse.

This claim clearly implies the result we need by standard spectral sequence argu-
ments. We will now begin to prove the required factorization. It is convenient for us to
work with pro-free Lie algebras instead of cofree Lie coalgebras. See the appendix for
definitions and results about pro-free and pronilpotent Lie algebras. Note that pro-free
Lie algebras are special cases of pronilpotent Lie algebrasLAeind LB denote the
(graded)k-linear dual toCA andCB. ThenLA andLB are pro-free Lie algebras on the
k-vector spaceA* and B*, and are thus pronilpotent. MoreoverA and LB have dif-
ferentials making them dg Lie algebras and there is a continuousfihag. B8 — LA.
Further, LA and LB possess natural filtrations by bracket length affdis a filtered
quasi-isomorphism. ~

Under these conditions we will construct a dg Lie algeBraso that f* factors as

LB D’ LA

so that:

h* and g* are continuous filtered quasi-isomorphisms of dg Lie algebras;
D' is a dg Lie algebra which is pro-free as a Lie algebra;

the maph™ : LB — D admits a continuous filtered left inverse;

the mapg* : D’ — LA admits a continuous filtered right inverse.

Taking continuous duals this is easily seen to be equivalent to the statement of the
claim.

We use an analogue of the mapping cylinder construction in topology.Ligt
denote the pro-free Lie algebra with two generatqrér such that|ds| = |z| + 1. We
introduce a differential inL(z) by settingd(t) = dt and d(dt) = 0. Then L{t) is
a filtered dg Lie algebra which is filtered contractible (which means that the graded
components corresponding to its filtration are contractible). For a filtered dg Lie algebra
| the free Lie product of and L(r) has an induced filtration and we denote /) its
completion with respect to this filtration. For a finite indexing bete introduce the
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notationl(t,),<; to denote the completion of the free Lie productl @ind the collection
of Lie algebrasL (r,) with o € I. If | is infinite we denote by(z,).,c; the inverse limit
of I{t,)scs WhereJ ranges through finite subsets bfNote that the natural inclusion
L — L{ty) is a filtered quasi-isomorphism having a filtered right inverse (which sends
all ¢, to zero).
Now let

D' = LB(t),

whereo runs through the set of homogeneous elements/ofWe then have a factor-
ization of f* as

LB — D — LA,

where the first arrow is the obvious inclusion and the second arrow is the map which
coincides with f* on LB and takes each element in LB(t,) to « € LA. Note that

the latter map is aurjectionand a filtered quasi-isomorphism. The following lemma
ensures that it has a (filtered) right inverse.

Lemma 2.9. Lets : [ — g be a continuous surjective map of dg Lie algebras which
are pro-free Lie algebras. Assume that s is a filtered quasi-isomorphism. Then s admits
a continuous filtered right inverse

Proof. Choose a filtered Lie algebra map: ¢ — [ for which ios = id; (we do
not claim thati is a map of dg Lie algebrasfj.11. Then we have an isomorphism of
vector spaces = [ ¢ i(g) wherel is the kernel ofs. Fora € g we have

d(i(a)) = i(d(a)) + {(a).

It is straightforward to check that the map: ¢ — I is a cocycle in the complex
Der’(g. 1) of filtration-preserving derivations off with values inl (the g-module
structure onl is provided by the map). Furthermore, it is possible to find a right
inverse tos compatible with differentials if and only if is a coboundary in D?I(g, I).
Sinces is a filtered quasi-isomorphisnh,is filtered contractible. Denote b¥, (1) the
nth filtration component ofl i.e., F,(I) consists of those elements Inwhich have
bracket length>n. Then F,(I)/F,+1(I) has zero homology. We have

Derj (g, 1) = lim Der*(g, F, ().

However sinceF,, (1)/F,+1(I) is contractible the obvious induction shows that Tigr
F,(I)) is likewise contractible so D?(g, I) is contractible and our lemma is
proved. O

Finally for (3) we only need to note that the canonical projection

Codef(CA, CA) — Der*(A, A)
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is a map of dg Lie algebras. The required result then follows from The&dnand
part (2) of the present theorem which has just been proved.

3. Rational homotopy groups of function spaces

Before discussing the rational homotopy of function spaces we need to establish the
following facts about the relation of spaces of maps and that of their Postnikov stages.
These are presumably well known but we have been unable to find a proper reference.
Let hAut(X) denote the group of homotopy classes of homotopy equivalences of a
spaceX. The set of homotopy classes of (unpointed) maps— Y is denoted by
[X, Y], as usual.

Proposition 3.1. Let X and Y be connected CW-complexes withX = » and Y is
nilpotent. LetX, and Y, denote their nth Postnikov stages. Then

(1) [X, Y] — [X,, Y,] is a bijection
(2) If X is nilpotent thenhAut(X) — hAut(X,) is an isomorphism of groups

Proof. Note first that part (2) of the Theorem is an immediate consequence of
part (1).
For (1) consider the following maps of sets:

[X.Y] = [X,Y,] < [X,, Yl

Let us prove first thafX, Y] — [X,Y,] is a bijection. For simplicity, we assume
that the Postnikov tower of consists of principal fibrations. In the general case we
could argue similarly, replacing the Postnikov towerYoby its principal refinement
(which exists sinceY is nilpotent). A mapX — Y, lifts to a mapX — Y,y if and
only if an obstruction class lying it#"*2(X, n,41(Y)) is zero. This is ensured by
our assumption that the dimension ¥fis less than or equal to. Furthermore, the
group H"t(X, m,+1(Y)) acts on the seftX, Y,;1] so that the set of orbits is precisely
[X, Y,]. Since this group is zero we conclude that there is a bijection between sets
[X,Y,] and [X, Y,+1]. Arguing by induction up the Postnikov tower ¥fwe see that
[X,Y] — [X,Y,] is a bijection.

We will now show that the mapX, Y, ] < [X,,, Y,,] is bijective. Since associating to
a space itsith Postnikov stage is a functor in the homotopy category, it follows that any
map X — Y, extends toX, — Y,. Furthermore, assuming again that the Postnikov
tower of Y consists of principal fibrations we see that the ambiguities in choosing
extensions lie in the relative cohomology groufi$ (X, X", nx(Y,)). For k<n these
groups vanish sinc& is an n-dimensional complex whereas fér > n they vanish
sinceY, has no homotopy above dimensionTherefore any maX — Y,, extends to
X, — Y, uniquely up to homotopy. [

We will also need the following linearized version of the preceding result.
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Proposition 3.2. Let A and B be two connected dgaso that the cohomology of A
vanishes above dimension n amd— B be a fixed dga map making B into an A
dg-module. Letd,, and B, denote the nth Postnikov stages of A and B respectively.
Then

(1) H,QQ(A, B) — H,EQ(AH, B,) is a bijection.
(2) HXQ(A, B) — HRQ(AH, B,) is an isomorphism of Lie algebras

Proof. Let us first explain the construction of the maHﬁQ(A, B) — H/EQ(AH, B,)
figuring in the formulation of the theorem. We assume from the very beginningAthat
and B are minimal which results in no loss of generality. ThHﬁQ(A, B) is simply
the zeroth cohomology of the complex DéA, B) (this, of course, is not a dg Lie
algebra unlessA = B). Next, A, and B, are subalgebras oA and B generated by
the polynomial generators in degrees:. Because of the minimalityi,, and B, are
closed under the differential. Clearly a derivation of degred 8> B descends to a
derivation A, — B,. Moreover, cycles in D&(A, B) map to cycles in D&(A,, B,)
and boundaries to boundaries. Thus, the m%Xb(A,B) — HRQ(A,,,B,,) is well-
defined and clearly is a Lie algebra map in the cdse B. It is further obvious that
part (1) of the proposition is a consequence of part (2).

As in the proof of PropositioB.1 we assume, purely for notational simplicity, that the
Postnikov tower ofA consists of principal fibrations. That means that for a polynomial
generatorx of A of degreek the elementdx belongs toA;_;. If this is not the case,
then one could argue similarly, using the principal refinement of the Postnikov tower
of A which exists sincéA is minimal.

Let us denote byl4 anddp the differentials inA and B and, by abuse of notation,
also the differentials im4,, and B,,.

Surjectivity Let £ : A, — B, be a derivation of zero degree such tlatdp =
dyo&. In other words,é is a cycle in De?(A,, B,). Then ¢ could be extended to
A,+1 if and only if for any generatox € A in degreen + 1 the element(dax) is a
coboundary inB. Note thatdax € A, so &(dax) is defined. We have

dpé(dax) = E(dadax) =0

which means thati(d4x) is an n + 2-cocycle inB. Since alln + 1-cocycles are
coboundaries we see thatcan indeed be extended #y,,1. Using induction up the
Postnikov tower ofA we see that could be extended to a derivatioh— B.

Injectivity: Suppose that® € Der°(A, B) determines a boundary in D¥A,, B,);
we will then show thaté is a boundary in D&(A, B). Indeed, considering as an
element in DeX(A,,, B,) we have

E=dpon+noda,

wherey is a derivationA, — B, of degree—1. Take a generator € A in dimension
n + 1; we want to defing)(x) so that the following equality were true:

¢(x) =dpon(x) +noda(x).
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For this, it is necessary and sufficient th@t— dp o7)(x) be a coboundary iB. We
have

dal(& —dpom(x)] = &(dax) —da(n(dpx))
= n(dB Ode)
=0.

In other words,(¢ — dg on)(x) is ann + 1-cocycle inB. Since alln + 1-cocycles are
coboundaries we conclude thétrestricted toA,1 is a coboundary in D&(A, 1,
By+1). Induction up the Postnikov tower & finishes the proof. [

Let X be a nilpotent space of finite type. Denote Ayts minimal model. TherA is
an augmented commutative differential graded algebra @vevhich is a polynomial
algebra onm,(X). The differential onA, d4 : A — A is a derivation of degree 1 for
which d4(A) = A4+ - A+. Here we denoted by, the set of elements i\ having
positive degree.

Let L := Der*A, the set of all graded derivations &f The differential onL is given
by the formulad(n) = [n, da] wheren € L. The conditionds od4 = 0 ensures that
the operatof—, d4] in L has square 0.

Since A is a cofibrant object in the closed model category of differential graded
algebras the cohomology df represents the derived functor of derivations. In other
words, H*(L) = H;Q(A, A) as we saw in Sectio. The set of derivations of degree

0, that is HXQ(A, A) is then a conventional (ungraded) Lie algebra.

Remark 3.3. Consider the graded Lie algebii(L). The condition tha# is minimal
nilpotent ensures that every element Bf(L) is nilpotent. In particularB(L) is a
nilpotent (ungraded) Lie algebra ovér.

We will now briefly recall the notion of homotopy in the category of dga’s restricting
ourselves to self-maps. The details may be foun@3in

Let A[z,dr] denote the differential graded algebra obtained frAnby adjoining
polynomial variables, dr subject to the relatiorid)? = 0. The differentiald g, a1
on A[t, dt] is induced from the one oA. More precisely, denote by, the partial
derivative with respect to. Then forh € A[r, dt] we have

dapr,an(h) = da(h) + (0;h)dt.
There are two dga maps[r, dr] — A given by
eo:h — hly—o and e1:h — h|;—1.

Let F : A > A be a dga self-map oA. ThenF is said to be homotopic to the
identity if there exists a dga mag — A[z, dr] such that its composition witleg
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is the identity map orA whereas its composition witla; is F. Note that any map

A — Alt, dt] could be written asF + Gdt whereF and G are mapsA — A[r]. The

set of dga self-maps ok homotopic to the identity forms a normal subgroup in the set
of all automorphisms oA. The corresponding quotient group is the groughomotopy
self-equivalencesf A and will be denoted by hAg@#). It is isomorphic to the group
of homotopy classes of homotopy self-equivalencesXgf, the rationalization of the
spacexX.

Theorem 3.4. Let X denote a nilpotent CW complex which is either finite or has a
finite Postnikov towerand let A*(X) denote its Sullivan—de Rham model. The group
hAut(A*(X)) = hAut(Xg) is the group of(Q-points of an affine algebraic group
scheme ovefd whose Lie algebra isH,&’Q(A*(X), A*(X)).

Remark 3.5. Sullivan [18] sketched the proof of the fact that hANig) is an alge-
braic group. The explicit identification of its Lie algebra in terms of André—Quillen
cohomology is new.

Proof. First of all we replaceA*(X) by its minimal model denoted by. Then
hAut(A) = hAut(A*(X)). By 3.1 and 3.2, the case of finite CW complex reduces to
that of the finite Postnikov tower. Thus we may assume g a nilpotent minimal
algebra with generators of bounded degree. Now because of the finiteness assumptions
the group of algebra automorphisms Af(i.e., not taking into account the differential)
is algebraic. Further the condition that an algebra mdap> A commutes withd4
is algebraic from which it follows that the groug of dga automorphisms of is
also an algebraic group ovdp. It is obtained from itsreductive part (coming from
the quadratic part of the differentialy) by iterated extensions by thedditive group
scheme

The Lie algebra of the groug is just the set of degree 0 derivations Afwhich
commute with the differential irA. Therefore this is the Lie algebrdg(L) of zero
degree cocycles of. The normal Lie subalgebr&%(L) of Z9(L) is nilpotent and
there is a corresponding normal subgrdsipn the algebra self-maps & obtained by
exponentiatingB®(L). We will show that this subgroup consists precisely of those self-
maps which are homotopic to the identity. Thus, h@t is the quotient of an affine
algebraic group by a normal affine algebraic subgroup and is thus affine algebraic.

Granting this for a moment, we see that the Lie algebra of hA\ut= Z/B is
the quotient Lie algebra&o(L)/Bo(L) which is preciselyH,&’Q(A, A) = HRQ(A*(X),
A*(X)) by the results of Sectiog.

Let F + Gdt : A — A[t,dt] be a homotopy for whichF|,—g = id4. First examine
the condition that it is a dga map. Féi, hx € A we have:

(F + Gdt)(h1h2) = F(h1h2) + G(h1h2)dt
F(h1)F(h2) + [F(h1)G (h2) + G(h1) F (h2)]dt
(F + Gdt)(hy)(F 4+ Gdt)(h2).
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So we get two conditions:

(1) F(h1h2) = F(h1)F (h2) which means simply thaf is an algebra map and
(2) G(hih2) = F(h1)G(h2) + G(h1) F (h2).

The second condition means th@tis an F-derivation. Settingr = 0 in the second
equation we get

Gli=o(h1h2) = h1G(g2) + G(h1)ha.

In other wordsG|;—o is a usual derivation of\.
Next, the condition that# + Gdt is a map ofdifferential algebras means that

(F 4+ Gdt)odg = dajt,an o (F + Gdt).

Applying both sides of this equation toe A and equating coefficients atand dt we
get two identities:

(1) Fodya=dsoF,
(2) O;F =Gods+dsoG =1[G,da].

The first condition above simply means that= F(r) commutes with the differential;
i.e., determines a family of maps of complexas— A. Settingsr = O in the second
equation we get, F|,—0 = [G|,=0, ds] which means that, F|;—o IS a coboundary
in L.

Now let F1 be an element ir3. ThenF can be expressed & = exp([Go, da))
where Go is a derivation ofA. Let F = F(t) = exp(t[Go,da]) and G = G(t) =
Goexp(t[Go,dal). Then (F(t), G(¢)) is the homotopy fromFy to id. Indeed,F(¢) is
an algebra map for eadhand G(¢) is an F(t)-derivation.

Conversely, suppose thdi' (), G(¢)) is a homotopy from id toF (1), we need
to show thatF (1) belongs toB. Here we will use the fact thad is nilpotent and
minimal but our proof extends under the condition tiiatis homotopic to the identity
through automorphisms, that 15(¢) is an automorphism for atl This condition follows
automatically for minimal algebras since a weak equivalence between minimal nilpotent
algebras is necessarily an isomorphism.

We can write

oo
F(t)y=1da+ Y Fjtl.
j=1

Since F : A — A[t,dt] we must have that the sum is locally finite in the sense that
for a € A, Fj(a) =0 for j > 0. F~1 exists formally:

i

FY oy =1da+ ) (=D [ D Fjl
=1 j=1

and this infinite sum is locally finite by the condition above.
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Sinced, F =[G, d4] we have, taking into account th&t commutes withd4:

(O F)F =[G, dalF!
= GodAoF_l—dAoGoF_:L
= [GF L, dy).

Since G(r) is an F(r)-derivation G F~1(r) will be a usual derivation. Noting that
(0: F(t))F~X(r) = 0, log F (1)
we have the following equation:
0 log F(t) = [GF L, dy].

Therefore

F(1)

1
exp(/ [GF_l,dA]dt>
0
1
exp[/ GFldt,dA].
0

Here the integral is carried out formally. Moreov%lGF‘ldt is a locally finite
expression and still a derivation. TherefaFgl) is contained in3. [

Remark 3.6. One naturally wonders whether there is a relationship between the whole
complex CXQ(A*(X),A*(X)) together with its Gerstenhaber bracket and the space
Aut(X) of homotopy self-equivalences of Schlessinger and Stash¢if7] provide an
affirmative answer to this question in the case whers simply connected. Namely,
they show that the complex consisting of derivations/Aoflowering the degree by

k > 1 serves as a Lie model for the universal covering of the space (RAufThat
implies that the Whitehead product in.; BAut(X) and the Gerstenhaber bracket in
HA<(§(A*(X), A*(X)) agree whereas our theorem compareBAut(X) and H3, (A, A).

It seems likely that the theorem of Schlessinger—Stasheff could be extended to the
nilpotent case as well.

Remark 3.7. One can also express the tangent Lie algebra to (¥ in terms of
the Quillen or dg Lie algebra model & at least wherX is simply connected (cf[5]
concerning Quillen models). Namely, £(X) is a Quillen model forX consider the
Chevalley—Eilenberg comple€&(L(X), Q) computing the Lie algebra cohomology
of L with trivial coefficients. ThenCEg(L(X), Q) is a cofibrant dga and serves as a
Sullivan model forX. Furthermore, the dg Lie algebra of derivations@f-(L(X), Q)
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coincides up to a shift of dimensions with the compl€&(L(X), L(X)) comput-

ing the Lie algebra cohomology of.(X) with coefficients in itself. The complex
Cégl(L(X),L(X)) carries a dg Lie algebra structure so tHﬂéE(L(X),L(X)), its
cohomology in the total degree 1 is an ungraded Lie algebra. We conclude that the Lie
algebra of hAutX o) is isomorphic toHéE(L(X), L(X)).

Our next result is concerned with the more general problem of compuatiRgX, Y)
for i >1. HereX, Y are rational nilpotent CW-complexes of finite type afdX, Y) is
the space of continuous maps frofninto Y. Recall thatA*(X) and A*(Y) denote the
Sullivan—-de Rham algebras &f and, respectively. In view of the previous remark
it is natural to expect that the homotopy groups X, Y) are expressed in terms
of the André—Quillen cohomology ofA*(Y) with values in A*(X). When X =Y
and X is simply connected the corresponding statement was proved by Schlessinger
and Stasheff by combining their deformation theory with the fact that Buis the
classifying space foX-fibrations. This machinery is not available far £ Y and we
use Propositior2.6 instead. Note also that the Gerstenhaber bracket no longer exists
on the complexC;(A, B) for A # B.

Assume that there is given a map: X — Y which determines a basepoint in
F(X,Y). The mapf induces a mapd*(¥Y) — A*(X) making A*(X) into a differential
graded module oveA*(Y).

Theorem 3.8. There is an isomorphism of sets
T (F(X,Y), ) = Hpy(A*(Y), A*(X)).
If n>2 then this is an isomorphism of Abelian groups

Proof. Consider the de Rham algebsd (X x §") wheren > 1. Clearly, A*(X x §") is
weakly equivalent as a commutative dga to the dgaxX)x A*(X)[n] where A*(X)[n]
is the square-zero ideal which is isomorphic ag@-aector space toA*(X) and whose
grading is shifted byn.

Denoting by F,(?, ?) the function space betwegwointedtopological spaces we have
an obvious homotopy fibre sequence:

F (8", F(X,Y)) —» F(S",F(X,Y)) »> F(x, F(X,Y)) = F(X,Y),

where the second arrow is induce by the inclusion of the basepoftt i(The basepoint
of F(X,Y) isfand we takeF, (5", F(X, Y)) to be the fibreover f) Standard adjunction
gives the homotopy fibre sequence

Fu(S", F(X,Y)) = F(X x §",Y) = F(X,Y). 2

Consider now the categoryy of spacesunder X i.e., spaces supplied with a map
from X with morphisms being the obvious commutative triangles. This is a topological
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closed model category ankl x S",Y € Tx. Note thatX x §”" is a cogroup object in
the homotopy category ofy, abelian whem > 1. Likewise A*(X x $") is (equivalent
to) an abelian group object if4+x). For n > 1 the cogroup structure oX x S”
corresponds to the group structure ah(X x $") under the Sullivan—de Rham functor
A* 7-X — CA*(X)-

It follows that the space,(S", F(X,Y)) is weakly equivalent to the function space
in Tx from X x §" to Y. Therefore, denoting by—, —]7; the set of homotopy classes
of maps in7x we have

T F(X,Y) 2 [X x 8", Y]y

Since the homotopy category of finite type rational space$xinis anti-equivalent to
the homotopy category of finite type dgaiser A*(X) we have

T F(X,Y) = [A*(Y), A"(X x S))]e

= [A%(Y), A"(X)X A" QO[n]le

12

HXQ(A*(Y,)A*(X)[n]) (by Proposition2.6)

12

Hp(AY(Y), A*(X)). O

Remark 3.9. If X is a point then the space of mafis— Y is simplyY. The previous
theorem then gives an identification af(Y) with Hx,(A*(Y), Q). This is not sur-
prising since by Theoren2.4 H;Q(A*(Y), Q) is identi%ed with the homology of the
complex Det(M(A*(Y))). Here M(A*(Y)) denotes the minimal model of. Clearly
this homology is simply the dual space of indecomposabled (A*(Y)) so we recover
a standard result in rational homotopy theory.

More generally, suppose that the mg@p: X — Y is homotopic to the trivial map.
Thus, via the augmentation map*(Y) — Q, A*(X) is an A*(Y)-module. Then it is
easy to see that there is an isomorphism of complexes

Cho(A*(Y), A*(X)) = Cig(A*(Y), DI®A™(X).

Here ® denotes completed tensor product. Therefore

Hpo(A*(Y), A*(X)) = H,Z{Q(A*(Y),@)®H*(X)
= m(Y)QH*(X).
So we recover an isomorphism obtained[4:

T (F(X,Y), /) = [[m() ® H* " (X).
k=1
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Remark 3.10. In the caseX andY are simply connected the considerations similar to
those in Remarl.7 yield a bijection of sets forn = 1 and an isomorphism of Abelian
groups forn > 1:

T F(X,Y) = HY(L(X), L(Y)),

where L(X) and L(Y) are Quillen models oK andY, respectively. It seems likely that
the last isomorphism continues to hold under no finiteness assumptions on the rational
spacesX and.
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Appendix A

In this appendix we collect certain facts about profinite Lie algebras which are used
in the main body of the paper. These facts appear to be standard but we are unaware
of any published references. Beldwdenotes a fixed field of characteristic zero.

Definition A.1. A profinite set is an inverse limit of finite sets. Profinite sets form
a categoryPS in which morphisms are continuous maps between profinite sets with
respect to the inverse limit topology.

Remark A.2. It is well known thatPS is equivalent to the category of totally discon-
nected compact Hausdorff topological spaces. We will not use this fact, however.

Definition A.3. A profinite k-vector space is an inverse limit of finite dimensional
k-vector spaces. Profinite spaces form a categdvict, in which morphisms are con-
tinuous linear maps between profinite spaces with respect to the inverse limit topology.

Remark A.4. Note that the category of profinite vector spaces (as well as that of
profinite sets) is closed under taking arbitrary inverse limits.

Definition A.5. Let U = lim . U,, V =lim  Vj be profinite spaces. Then their com-
pleted tensor produd/®V is the following profinite space.

URV =lim Uy ® Vp.
<~ o,p

Proposition A.6. The categoryPVect; is anti-equivalent to the categoyect; of dis-
crete k-vector spaces and all linear maps. Under this anti-equivalence the tensor prod-
uct in Vect, corresponds to the completed tensor productPivect;.
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Proof. Note that any vector space is a direct limit of its finite-dimensional sub-
spaces. The functor Vect— PVect; is specified by taking the dual vector space

V = V*:= Hom(V, k). The inverse functor associates to any profinite vector space

its continuous dual/* := Homeont(U, k). The second statement of the proposition is
obvious. [J

Corollary A.7. Any continuous surjective mdp — V in PVect, admits a continuous
splitting.

Proof. Indeed, using the anti-equivalence BMect, and Vect we see that this is
equivalent to the statement that any monomorphism of dis&etxtor spaces is split
which is clearly true. O

For a finite setX denote byk(X) the vector space spanned by the elementX.in
More generally, letX = lim_ X, be a profinite set and denote kyX) the profinite
vector space

K(X) = lim k(X,).

Clearly this defines a functdPS +— PVecty.

Proposition A.8. The functor X — k(X) is left adjoint to the forgetful functor
PVect, — PS.

Proof. Let X = lim._ X, be a profinite set and& = lim . Vs be a profinite vector
space. Then we have isomorphisms of sets

PVect, (k(X), V) = Iimﬁlim Vect (k(X«), Vp)
<« — o

= PSX, V).

These isomorphisms are obviously naturalXirandV. [J

Definition A.9. A pronilpotent Lie algebra is an inverse limit of finite-dimensional
nilpotent Lie algebras. Pronilpotent Lie algebras form a catedgdhye; in which mor-
phisms are continuous Lie algebra maps. For clarity, we state everything for the un-
graded case, but the definitions and proofs go through in the graded case as well.

For a finite-dimensional vector spavedenote byLV the free Lie algebra oW, it
is well known that£V can be identified with the space of primitive elementsTW
the tensor algebra ovi. The Lie algebralV has a filtration with respect to the bracket
length. Denote by V the completion ofLV with respect to this filtration. Alternatively,
LV is the space of primitive elements in the completed tensor algebfa= []:2, Ve,
Note thatLV is a pronilpotent Lie algebra and gfis a finite-dimensional nilpotent Lie
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algebra then there is a natural bijection of sets:
PLier(LV, g) = Veck(V, g). (A1)

More generally, letV = lim _ V,, be a pronilpotent space. ThdiV :=lim._ LV,. We
will call LV the pro-free Lie algebra oW, it is still a pronilpotent Lie algebra. The
correspondenc& +— LV is clearly a functorPVect, — PLie.

Proposition A.10. The functor Vi LV is left adjoint to the forgetful functor
PlLie; — PVect,.

Proof. Let LV =lim._ LV, whereV, are finite-dimensional vector spaces apnd-
lim. gz wheregg are finite-dimensional nilpotent Lie algebras. We have

PLier(LV, g) = IimﬂPLiek(LV, gp)

1

Iimﬁlim PLiex(LVy, gp)
<~ —

12

= Iimﬂlim Vect(Vy, gg) by formula @.1)
<« — o

12

PVect, (V, g). O

Proposition A.11. Let g € PLiex and LV be a pro-free Lie algebra. Then any contin-
uous surjective map of Lie algebras— LV admits a continuous splitting.V — g.

Proof. By PropositionA.10 a continuous splitting off — LV in PLie; is equiv-
alent to the continuous splitting off — V in PVect. The latter exists by
Corollary A.7. O

Definition A.12. A continuous derivation of a pronilpotent Lie algely# a continuous
map f : g — g which is a derivation ofg in the usual sense. The space of all
derivations ofg will be denoted by Deig). Clearly DeKyg) is itself a Lie algebra
under the commutator bracket.

Proposition A.13. Any continuous derivation of a pro-free Lie algebra LV is deter-
mined by its restriction on V so there is an isomorphism of sets

Der(LV) = PVect (V, LV).

Proof. The proof is similar to that of PropositioA.10. Instead of formula4.1) we
use the easily checked bijection of sets

Der(LV) = Vect.(V,LV)

for a finite-dimensional spacé. [
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Next, we discuss the relation of pronilpotent Lie algebras and Lie coalgebras.

Definition A.14. A Lie coalgebra ovek is a (discretek-vector spacé/ together with

a mapo : V — V ® V such that thek-dual mapV* @ V* — (V ® V)* — V* is
skew-symmetric and satisfies the Jacobi identity i finite dimensional we say that

it is conilpotentif the corresponding Lie algebra dn* is nilpotent. In general, we say
that a Lie coalgebra is conilpotent if it is a union of its finite-dimensional conilpotent
Lie subcoalgebras. We denote the category of conilpotent Lie coalgebrask dwer
CLiek.

Proposition A.15. The categoryCLie; is anti-equivalent to the categorfLie.

Proof. The proof is the same as that of Propositias. [

We define the a coderivation of a conilpotent Lie coalge¥ras the linear map
V — V such that the dual map™* — V* is a continuous derivation of the associated
pro-free Lie algebra/*. Thus CodefV) = Der(V*) is itself a Lie algebra.

Example A.16. Let H be a Hopf algebra ovek and denote byl its augmentation
ideal. Let4 : H —- H ® H be the diagonal i'H andt: H® H —- H ® H be

the switch map. Denote by’ : H — H ® H the compositionto 4. Then the map
A—A": H— H® H induces a Lie cobracket on the space of indecomposables

The corresponding Lie algebra will be isomorphic to the space of primitive elements in
H*. Now let H = T'V, the tensor coalgebra on a spatendowed with the so-called
cut coproduct:

A(v1®...®vn)=Z[v1®...®vk]®[vk+1®...®vn].
k

Together with the shuffle product the diagonélmakesTV into a Hopf algebra. Its
space of indecomposables is the cofree Lie coalgebra whose dual is the pro-free Lie
algebraL V*.

We see, that the space of coderivations of a cofree Lie coalgebra on a\space
identified with the space of linear magsV — V.
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