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Abstract

We develop a simple theory of André–Quillen cohomology for commutative differential graded
algebras over a field of characteristic zero. We then relate it to the homotopy groups of function
spaces and spaces of homotopy self-equivalences of rational nilpotent CW-complexes. This puts
certain results of Sullivan in a more conceptual framework.
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1. Introduction

André–Quillen cohomology is a cohomology theory for commutative algebras origi-
nally introduced in [1,15]. It was subsequently generalized to cover simplicial algebras
over operads[8], differential gradedE∞-algebras[14], and commutativeS-algebras
[2].
One of the purposes of the present paper is to give a simple and direct treatment

of the André–Quillen cohomology in the category of commutative differential graded
algebras (dga’s) over a field of characteristic zero. This is done in Section2. Our initial
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definition of André–Quillen cohomology of a dgaA with coefficients in the differential
graded (dg) moduleM over A is via an explicit cochain complexC∗AQ(A, M) similar
to the one introduced in[10]. We then produce various equivalent characterizations
of André–Quillen cohomology, introduce the Gerstenhaber bracket onC∗AQ(A, A) and
show its homotopy invariance. In this connection we mention the recent paper[6]
where analogues of some of our results were proved in the context of Hochschild
cohomology.
In Section3 we apply the developed techniques to computing the homotopy groups of

function spaces. (We are dealing withunpointedspaces, however our machinery could
be easily adapted to the pointed situation as well.) In particular, we are concerned with
the group hAut(X) of homotopy classes of homotopy self-equivalences of a nilpotent
CW-complexX. A well-known theorem of Sullivan[18] and Wilkerson[20] asserts
that under suitable finiteness assumptions hAut(X) is an arithmetic group, that is,
commensurable to the group of integer points of some algebraic group overQ. An
important step is to show that the group hAut(XQ) is isomorphic to the group of
Q-points of an algebraic group. HereXQ denotes therationalization of the spaceX,
i.e. its localization with respect to the homology theoryH∗(−, Q).
We reprove this result and identify the Lie algebra of this algebraic group. It turns

out to be isomorphic toH 0
AQ(A∗(X), A∗(X)), the zeroth André–Quillen cohomology

of the Sullivan–de Rham algebra ofX with coefficients in itself. Moreover, the Lie
bracket corresponds to the Gerstenhaber bracket onH ∗AQ(A∗(X), A∗(X)).
We also consider the question of computing the higher homotopy groups of a function

spaceF (X, Y ) for two rational spacesX andY. The answer is again formulated in terms
of André–Quillen cohomology associated to the Sullivan–de Rham models ofX andY.
This result was hinted at in[13].
There has been some previous work on the relation between spaces of automorphisms

of rational spaces and derivations. It was described already in the original paper of
Sullivan [18] and has been described in the paper of Schlessinger and Stasheff[17].
Tanre [19] describes models for Aut(X) and BAut(X).
The computation of the rational homotopy type of function spaces was realized for

the first time by Haefliger[9].

2. André–Quillen cohomology of commutative differential graded algebras

Let C denote the category of commutative differential graded algebras overk, not
necessarily connected. Herek is a field of characteristic 0. The differential is assumed
to raise the degree by one. ThenC admits a structure a closed model category as
follows:

• weak equivalences are maps which induce an isomorphism on cohomology groups;
• fibrations are surjective maps;
• cofibrations are the maps which have the left lifting property with respect to acyclic
fibrations.



20 J. Block, A. Lazarev /Advances in Mathematics 193 (2005) 18–39

That C is a closed model category is proved in the case of connected dga’s in[3].
The general case is due to Hinich[11], who proved it in the still greater generality of
algebras over an operad.
Let us describe the cofibrant objects inC. First consider the operation of glueing

cells to a dga (also called the Hirsch extension). LetA be a dga andV be a graded
vector space. Letf :V → Z∗(A) be a linear map of degree 1 fromV to the space
of cocycles ofA. Then define a new dgaAf whose underlying graded vector space is
A ⊗ �V . Here we denoted, following tradition, by�V the free graded commutative
algebra on the vector spaceV. The differential onA is the old differential and the one
on V is given by the mapf. Then Af is said to be obtained fromA by glueing a
(generalized) cell. Observe thatAf is a pushout ofA by a free commutative algebra
which justifies the name. A dga obtained from the trivial dgak is called acell dga.
Any cell dga is cofibrant and any cofibrant dga is a retract of a cell dga.
Now consider the categoryA-mod of dg modules over a dgaA. This is also a closed

model category where fibrations are surjective maps. Then a graded derivation ofA
with values inM of degreed is a map� :A → M of degreed which satisfies the
Leibniz condition:

�(b1b2) = �(b1)b2+ (−1)d|b1|b1�(b2).

The set of all derivations form a complex, in fact a dgA-module Der∗(A, M).
Associated to a dgaA is the dg module of its Kähler differentials�A. It is defined

in the usual manner as�A := I/I2 where I is the kernel of the multiplication map
A⊗ A→ A. It is a standard fact that there is an isomorphism of dgA-modules:

Hom∗A(�A, M) ∼= Der∗(A, M).

Let us now introduce the derived version of�A also called theAndré–Quillen homology
of A. First recall that the (homological) Hochschild complex ofA with coefficients in
itself is defined as the complex

C∗(A, A) = {A← A⊗2← . . .}

with the standard bar differential.C∗(A, A) is in fact itself a differential graded algebra
with respect to the shuffle product, sinceA is graded commutative. SinceA is a dga this
is in fact abicomplex. (The Hochschild differential lowers degree while the differential
of A raises degree. Thus the total degree in the bicomplex is the difference of the two.)
We will make use of the truncated version ofC∗(A, A) denoted byC̄∗(A, A). This
is the same complex asC∗(A, A) but starting withA⊗2. SinceA is commutative the
complex C̄∗(A, A) splits off C∗(A, A) as a direct summand.

Definition 2.1. The André–Quillen complexCAQ∗ (A, A) of a dgaA is the quotient
complex ofC̄∗(A, A) by the subcomplex of decomposables, i.e., those elements which
could be represented as shuffle products of two or more elements inC̄∗(A, A).
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Remark 2.2. This complex (shifted) was defined by Harrison[10] in the case whenA
is a usual (ungraded) algebra. Its homology is also called the Harrison homology ofA.
It is well known that in characteristic zero case the shifted Harrison homology agrees
with the André–Quillen homology defined by means of simplicial resolutions.

Theorem 2.3. Let A be a cofibrant dga. Then there is a quasi-isomorphism of dg
A-modules:

�A � CAQ∗ (A, A).

Proof. Consider the mapf : A⊗3→ A⊗2 :

f : a ⊗ b ⊗ c �→ ab ⊗ c − a ⊗ bc + (−1)(|a|+|b|)|c|ca ⊗ b.

Clearly, Imf = �A. There results a map of dg modules

CAQ∗ (A, A)→ �A

and we want to prove that this map is a quasi-isomorphism for a cofibrant commutative
dgaA.
Without loss of generality, we assume thatA is constructed fromk by a series of

Hirsch extensions. This givesA a filtration for which the associated graded algebra is
simply the free commutative algebra on some set of generators with zero differential.
This filtration lifts to�A andC

AQ∗ (A, A) so that the canonical mapCAQ∗ (A, A)→ �A

is a filtered map. Since it is clearly a quasi-isomorphism ifA is free commutative with
vanishing differential we conclude that the map is a quasi-isomorphism on the level of
associated graded modules, therefore it was a quasi-isomorphism to begin with.�
Now let us turn to the functor of derivations and its derived version. LetM be a dg

module over a dgaA and denote bỹA the cofibrant replacement ofA. ThenM is also
a dg Ã-module and we define the derived functor of derivations ofA with values in
M as Der∗(Ã, M). (Strictly speaking, we have not set up things so that it is a derived
functor; Der is not even a functor.) We have

Der∗(Ã, M) ∼= Hom∗A(�Ã, M) � Hom∗A(CAQ∗ (A, A), M).

The complex Hom∗A(C
AQ∗ (A, A), M) embeds as a subcomplex into the truncated

Hochschild complex

C̄∗(A, M) := Hom∗A(C̄∗(A, A), M)

consisting of those cochains which vanish on the shuffle products. (A shifted version
of this complex is commonly called the Harrison cohomology complex ofA with
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coefficients inM.) We denote this complex byC∗AQ(A, M) and its cohomology by
H ∗AQ(A, M). Therefore we proved the following

Theorem 2.4. The cohomology of the complexC∗AQ(A, M) is isomorphic to the coho-

mology of the differential graded moduleDer∗(Ã, M) where Ã is a cofibrant replace-
ment of A.

Corollary 2.5. Let A be a cofibrant dga and M is a dg A-module. Then there is a
spectral sequenceH ∗AQ(H ∗(A), H ∗(M))⇒ H ∗AQ(A, M).

Thus, we have two ways to compute the André–Quillen cohomology of a dgaA with
values in a dgA-moduleM. The first is to replaceA with its cofibrant approximation
and take its derivations inM. The second is via the functorial complexC∗AQ(A, M).
The method via the complexC∗AQ(A, M) is better suited for theoretical purposes; in
particular it gives rise to the spectral sequence as above. Another useful property of
the complexC∗AQ(A, M) is that it is a direct summand of the Hochschild complex.
This is something that is not seen from the point of view of the derived functor of the
derivations.
Derivations also admit the following useful interpretation in terms of square-zero

extensions. LetA be a dga andM be a dgA-module. Denote byA�M the dga which
is isomorphic as a complex toA⊕M with multiplication defined as

(a1, m1)(a2, m2) = (a1a2, a1m2+m1a2).

We will call A�M the square-zero extensionof A by M. The dgaA�M is supplied
with a dga map intoA which is simply the projection onto the first component. We can
thus viewA�M as an object in theovercategoryof A, i.e., the category whose objects
are dga’sB supplied with a map�B : B → A and morphisms are obvious commutative
triangles. We will denote this overcategory byCA. It inherits the structure of a closed
model category fromC so that a morphism inCA is a cofibration if it is so considered
as a map inC. Note thatA is also an object inCA in an obvious fashion.
The associationM�A�M is a functorA-mod→ CA. It clearly preserves weak

equivalences and therefore lifts to a functor between the corresponding homotopy
categories.
Let B be an object inCA which we could assume to be cofibrant without loss of

generality. Then anA-moduleM has a structure of aB-module via the structure map
�B : B → A. An elementary calculation shows that a derivationB → M is nothing
but a mapB → A�M in CA. Furthermore, we have the following proposition:

Proposition 2.6. There is a natural isomorphism

H 0
AQ(B, M) ∼= [B, A�M]CA

,

where [−,−]CA
denotes the set of homotopy classes of maps inCA.
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Proof. The mapb �→ b ⊗ 1 − 1 ⊗ b from B → B ⊗ B can be considered as a
map B → I where I is the kernel of the product mapB ⊗ B → B. Composing this
map with the projectionI → I/I2 = �B we get a mapdB : B → �B , known as
the universal derivationof the dgaB. (It is standard to check that this is indeed a
derivation). Denoting by[−,−]B-mod the set of morphisms in the homotopy category
of B-mod we get a natural transformation

H 0
AQ(B, M) = [�B, M]B-mod �→ [B, A�M]CA

(1)

which associates to a homotopy class of a mapf :�B → M the composition

B
(1,dB)→ B��B

(�B,f )→ A�M.

To check that the map of (1) is an isomorphism consider the functorS which associates
to a complexN the symmetric algebraS(N). The functorS is left adjoint to the
forgetful functor from dga’s to complexes and this adjunction passes to homotopy
categories. Now it is easy to see that the map of 1 is an isomorphism ifB = S(N).
The general case follows by virtue of the following canonical split coequalizer which
exists for any dgaB:

S2B⇒SB → B. �

Remark 2.7. On a technical note, observe that the projectionA�M → A is a
fibration from which it follows thatA�M is a fibrant object inCA. Therefore the
set [B, A�M]CA

does represent the set of morphisms in the homotopy category ofCA.

The next thing we are going to describe is theGerstenhaber bracketon the André–
Quillen cohomology. It turns out that for a dgaA the complexC∗AQ(A, A) admits
the structure of a dg Lie algebra. The most conceptual way to describe it is due to
Schlessinger and Stasheff[16] which we will now recall.
Let CA be the cofree Lie coalgebra onA. It could be described as the quotient of the

reduced tensor algebraT A+ = ⊕∞i=1A⊗i by the image of the shuffle product. The usual
bar differential descends fromT A+ to CA making it an acyclic Lie coalgebra. Then
C∗AQ(A, A) is naturally identified with the space Coder∗(CA, CA) of coderivations
of the Lie coalgebraCA. See the appendix for background on Lie coalgebras and
coderivations. Moreover, Coder∗(CA, CA) is naturally a dg Lie algebra with respect to
the commutator bracket which we will call the Gerstenhaber bracket since it is a direct
analogue of the bracket introduced in[7] on the Hochschild complex of an algebra.
On the other hand, André–Quillen cohomology ofA could be described as Der∗(Ã, Ã)

where Ã is the cofibrant approximation ofA. This gives another structure of a graded
Lie algebra onH ∗AQ(A, A). The following result shows that these two structures coin-
cide, and, moreover are invariants of the weak homotopy type ofA.
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Theorem 2.8. (1) For two weakly equivalent cofibrant dga’s A and B the dg Lie
algebrasDer∗(A, A) and Der∗(B, B) are quasi-isomorphic;

(2) for two weakly equivalent(not necessarily cofibrant) dga’s A and B the dg Lie
algebrasCoder∗(CA, CA) and Coder∗(CB, CB) are quasi-isomorphic;

(3) for a cofibrant dga A the dg Lie algebrasDer∗(A, A) and Coder∗(CA, CA) are
quasi-isomorphic.

Proof. The main problem is, of course, that Der∗(A, A) is not functorial with respect
to A. To overcome this difficulty we use the properties of closed model categories.
For part (1) letf : A → B be a weak equivalence between two cofibrant dga’s.
First assume thatf is a fibration. Then there exists a right splittingg :B → A so
that f ◦ g = idB . Then define the map of dga’s: End(B) → End(A) by assigning
to a maps :B → B the mapg ◦ s ◦ f . The conditionf ◦ g = idB ensures that this
map respects composition of endomorphisms. It follows that we have a map of dg
Lie algebrash :Der∗(B, B)→ Der∗(A, A) together with the commutative diagram of
complexes:

Der(A, A)

������������

h
�� Der(B, B)

Der(A, B)

������������

Here the southeast arrow and the northeast arrows are induced byf andg respectively.
It follows that h is a quasi-isomorphism.
Similarly if f :A→ B is an acyclic cofibration then it admits a left splittingg :B →

A so that g ◦ f = idA and we have a map of dg Lie algebras Der∗(B, B) →
Der∗(A, A). In the general case we use the presentation off as a composition of
a cofibration and a fibration.
The argument for part (2) is more difficult, although the idea is the same. The most

conceptual way is to introduce a closed model category structure on dg Lie coalgebras
and notice that for a dgaA the dg Lie coalgebraCA is a fibrant–cofibrant object. The
corresponding result for dg coalgebras is due to Hinich[12].
While there is little doubt that this could be done a detailed proof would require

rewriting much of Hinich’s paper (with appropriate modifications). Since we do not
need the full strength of the model category structure we give an alternative proof here
which is of some independent interest.
Let f :A → B be a quasi-isomorphism between two dga’s and denote byf̃ the

induced map of dg Lie coalgebrasCA → CB. Note that f̃ is a quasi-isomorphism.
Moreover, note thatCA and CB have filtrations inherited from the tensor coalgebras
and f̃ is a filtered quasi-isomorphism, that is it induces a quasi-isomorphism on each
graded component.
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We claim thatf̃ could be factored as

CA

g̃

�� D
h̃

�� CB,

where

• both maps̃g and h̃ are filtered quasi-isomorphisms of dg Lie coalgebras;
• D is a dg Lie coalgebra that is free as a Lie coalgebra;
• the mapg̃ : CA→ D admits a filtered left inverse;
• the maph̃ : D→ CB admits a filtered right inverse.

This claim clearly implies the result we need by standard spectral sequence argu-
ments. We will now begin to prove the required factorization. It is convenient for us to
work with pro-freeLie algebras instead of cofree Lie coalgebras. See the appendix for
definitions and results about pro-free and pronilpotent Lie algebras. Note that pro-free
Lie algebras are special cases of pronilpotent Lie algebras. LetLA and LB denote the
(graded)k-linear dual toCA andCB. ThenLA andLB are pro-free Lie algebras on the
k-vector spaceA∗ andB∗, and are thus pronilpotent. Moreover,LA and LB have dif-
ferentials making them dg Lie algebras and there is a continuous mapf̃ ∗ : LB → LA.
Further,LA and LB possess natural filtrations by bracket length andf̃ ∗ is a filtered
quasi-isomorphism.
Under these conditions we will construct a dg Lie algebraD′ so thatf̃ ∗ factors as

LB
h̃∗

�� D′
g̃∗

�� LA

so that:

• h̃∗ and g̃∗ are continuous filtered quasi-isomorphisms of dg Lie algebras;
• D′ is a dg Lie algebra which is pro-free as a Lie algebra;
• the maph̃∗ : LB → D admits a continuous filtered left inverse;
• the mapg̃∗ : D′ → LA admits a continuous filtered right inverse.

Taking continuous duals this is easily seen to be equivalent to the statement of the
claim.
We use an analogue of the mapping cylinder construction in topology. LetL〈t〉

denote the pro-free Lie algebra with two generatorst, dt such that|dt | = |t | + 1. We
introduce a differential inL〈t〉 by setting d(t) = dt and d(dt) = 0. ThenL〈t〉 is
a filtered dg Lie algebra which is filtered contractible (which means that the graded
components corresponding to its filtration are contractible). For a filtered dg Lie algebra
l the free Lie product ofl andL〈t〉 has an induced filtration and we denote byl〈t〉 its
completion with respect to this filtration. For a finite indexing setI we introduce the
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notationl〈t�〉�∈I to denote the completion of the free Lie product ofl and the collection
of Lie algebrasL〈t�〉 with � ∈ I . If I is infinite we denote byl〈t�〉�∈I the inverse limit
of l〈t�〉�∈J whereJ ranges through finite subsets ofI. Note that the natural inclusion
L ↪→ L〈t�〉 is a filtered quasi-isomorphism having a filtered right inverse (which sends
all t� to zero).
Now let

D′ := LB〈t�〉,

where� runs through the set of homogeneous elements ofLA. We then have a factor-
ization of f̃ ∗ as

LB → D′ → LA,

where the first arrow is the obvious inclusion and the second arrow is the map which
coincides withf̃ ∗ on LB and takes each elementt� in LB〈t�〉 to � ∈ LA. Note that
the latter map is asurjectionand a filtered quasi-isomorphism. The following lemma
ensures that it has a (filtered) right inverse.

Lemma 2.9. Let s : l → g be a continuous surjective map of dg Lie algebras which
are pro-free Lie algebras. Assume that s is a filtered quasi-isomorphism. Then s admits
a continuous filtered right inverse.

Proof. Choose a filtered Lie algebra mapi : g → l for which i ◦ s = idl (we do
not claim thati is a map of dg Lie algebras),A.11. Then we have an isomorphism of
vector spacesl ∼= I ⊕ i(g) where I is the kernel ofs. For a ∈ g we have

d(i(a)) = i(d(a))+ �(a).

It is straightforward to check that the map� : g → I is a cocycle in the complex
Der∗f (g, I ) of filtration-preserving derivations ofg with values in I (the g-module
structure onI is provided by the mapi). Furthermore, it is possible to find a right
inverse tos compatible with differentials if and only if� is a coboundary in Der∗f (g, I ).
Sinces is a filtered quasi-isomorphism,I is filtered contractible. Denote byFn(I) the
nth filtration component ofI i.e., Fn(I) consists of those elements inI which have
bracket length�n. ThenFn(I)/Fn+1(I ) has zero homology. We have

Der∗f (g, I ) ∼= lim← Der∗(g, Fn(I )).

However sinceFn(I)/Fn+1(I ) is contractible the obvious induction shows that Der∗(g,

Fn(I )) is likewise contractible so Der∗f (g, I ) is contractible and our lemma is
proved. �
Finally for (3) we only need to note that the canonical projection

Coder∗(CA, CA)→ Der∗(A, A)
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is a map of dg Lie algebras. The required result then follows from Theorem2.4 and
part (2) of the present theorem which has just been proved.�

3. Rational homotopy groups of function spaces

Before discussing the rational homotopy of function spaces we need to establish the
following facts about the relation of spaces of maps and that of their Postnikov stages.
These are presumably well known but we have been unable to find a proper reference.
Let hAut(X) denote the group of homotopy classes of homotopy equivalences of a
spaceX. The set of homotopy classes of (unpointed) mapsX → Y is denoted by
[X, Y ], as usual.

Proposition 3.1. Let X and Y be connected CW-complexes withdimX = n and Y is
nilpotent. LetXn and Yn denote their nth Postnikov stages. Then

(1) [X, Y ] → [Xn, Yn] is a bijection.
(2) If X is nilpotent thenhAut(X)→ hAut(Xn) is an isomorphism of groups.

Proof. Note first that part (2) of the Theorem is an immediate consequence of
part (1).
For (1) consider the following maps of sets:

[X, Y ] → [X, Yn] ← [Xn, Yn].

Let us prove first that[X, Y ] → [X, Yn] is a bijection. For simplicity, we assume
that the Postnikov tower ofY consists of principal fibrations. In the general case we
could argue similarly, replacing the Postnikov tower ofY by its principal refinement
(which exists sinceY is nilpotent). A mapX → Yn lifts to a mapX → Yn+1 if and
only if an obstruction class lying inH n+2(X, �n+1(Y )) is zero. This is ensured by
our assumption that the dimension ofX is less than or equal ton. Furthermore, the
groupH n+1(X, �n+1(Y )) acts on the set[X, Yn+1] so that the set of orbits is precisely
[X, Yn]. Since this group is zero we conclude that there is a bijection between sets
[X, Yn] and [X, Yn+1]. Arguing by induction up the Postnikov tower ofY we see that
[X, Y ] → [X, Yn] is a bijection.
We will now show that the map[X, Yn] ← [Xn, Yn] is bijective. Since associating to

a space itsnth Postnikov stage is a functor in the homotopy category, it follows that any
map X → Yn extends toXn → Yn. Furthermore, assuming again that the Postnikov
tower of Y consists of principal fibrations we see that the ambiguities in choosing
extensions lie in the relative cohomology groupsH k(X, Xn, �k(Yn)). For k�n these
groups vanish sinceX is an n-dimensional complex whereas fork > n they vanish
sinceYn has no homotopy above dimensionn. Therefore any mapX→ Yn extends to
Xn → Yn uniquely up to homotopy. �
We will also need the following linearized version of the preceding result.
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Proposition 3.2. Let A and B be two connected dga’s so that the cohomology of A
vanishes above dimension n andA → B be a fixed dga map making B into an A
dg-module. LetAn and Bn denote the nth Postnikov stages of A and B respectively.
Then

(1) H 0
AQ(A, B)→ H 0

AQ(An, Bn) is a bijection.

(2) H 0
AQ(A, B)→ H 0

AQ(An, Bn) is an isomorphism of Lie algebras.

Proof. Let us first explain the construction of the mapH 0
AQ(A, B) → H 0

AQ(An, Bn)

figuring in the formulation of the theorem. We assume from the very beginning thatA
andB are minimal which results in no loss of generality. ThenH 0

AQ(A, B) is simply
the zeroth cohomology of the complex Der∗(A, B) (this, of course, is not a dg Lie
algebra unlessA = B). Next, An and Bn are subalgebras ofA and B generated by
the polynomial generators in degrees�n. Because of the minimalityAn and Bn are
closed under the differential. Clearly a derivation of degree 0A → B descends to a
derivationAn → Bn. Moreover, cycles in Der0(A, B) map to cycles in Der0(An, Bn)

and boundaries to boundaries. Thus, the mapH 0
AQ(A, B) → H 0

AQ(An, Bn) is well-
defined and clearly is a Lie algebra map in the caseA = B. It is further obvious that
part (1) of the proposition is a consequence of part (2).
As in the proof of Proposition3.1we assume, purely for notational simplicity, that the

Postnikov tower ofA consists of principal fibrations. That means that for a polynomial
generatorx of A of degreek the elementdx belongs toAk−1. If this is not the case,
then one could argue similarly, using the principal refinement of the Postnikov tower
of A which exists sinceA is minimal.
Let us denote bydA and dB the differentials inA andB and, by abuse of notation,

also the differentials inAn andBn.
Surjectivity: Let � : An → Bn be a derivation of zero degree such that� ◦ dB =

dA ◦ �. In other words,� is a cycle in Der0(An, Bn). Then � could be extended to
An+1 if and only if for any generatorx ∈ A in degreen+ 1 the element�(dAx) is a
coboundary inB. Note thatdAx ∈ An so �(dAx) is defined. We have

dB�(dAx) = �(dAdAx) = 0

which means that�(dAx) is an n + 2-cocycle in B. Since all n + 1-cocycles are
coboundaries we see that� can indeed be extended toAn+1. Using induction up the
Postnikov tower ofA we see that� could be extended to a derivationA→ B.
Injectivity: Suppose that� ∈ Der0(A, B) determines a boundary in Der0(An, Bn);

we will then show that� is a boundary in Der0(A, B). Indeed, considering� as an
element in Der0(An, Bn) we have

� = dB ◦ �+ � ◦ dA,

where� is a derivationAn → Bn of degree−1. Take a generatorx ∈ A in dimension
n+ 1; we want to define�(x) so that the following equality were true:

�(x) = dB ◦ �(x)+ � ◦ dA(x).
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For this, it is necessary and sufficient that(�− dB ◦ �)(x) be a coboundary inB. We
have

dA[(�− dB ◦ �)(x)] = �(dAx)− dA(�(dBx))

= �(dB ◦ dBx)

= 0.

In other words,(�− dB ◦ �)(x) is an n+ 1-cocycle inB. Since alln+ 1-cocycles are
coboundaries we conclude that� restricted toAn+1 is a coboundary in Der0(An+1,
Bn+1). Induction up the Postnikov tower ofA finishes the proof. �

Let X be a nilpotent space of finite type. Denote byA its minimal model. ThenA is
an augmented commutative differential graded algebra overQ which is a polynomial
algebra on�∗(X). The differential onA, dA : A→ A is a derivation of degree 1 for
which dA(A) = A+ · A+. Here we denoted byA+ the set of elements inA having
positive degree.
Let L := Der∗A, the set of all graded derivations ofA. The differential onL is given

by the formulad(�) = [�, dA] where � ∈ L. The conditiondA ◦ dA = 0 ensures that
the operator[−, dA] in L has square 0.
Since A is a cofibrant object in the closed model category of differential graded

algebras the cohomology ofL represents the derived functor of derivations. In other
words,H ∗(L) ∼= H ∗AQ(A, A) as we saw in Section2. The set of derivations of degree

0, that isH 0
AQ(A, A) is then a conventional (ungraded) Lie algebra.

Remark 3.3. Consider the graded Lie algebraB∗(L). The condition thatA is minimal
nilpotent ensures that every element inB∗(L) is nilpotent. In particularB0(L) is a
nilpotent (ungraded) Lie algebra overQ.

We will now briefly recall the notion of homotopy in the category of dga’s restricting
ourselves to self-maps. The details may be found in[3].
Let A[t, dt] denote the differential graded algebra obtained fromA by adjoining

polynomial variablest, dt subject to the relation(dt)2 = 0. The differentialdA[t,dt]
on A[t, dt] is induced from the one onA. More precisely, denote by�t the partial
derivative with respect tot. Then forh ∈ A[t, dt] we have

dA[t,dt](h) = dA(h)+ (�t h)dt.

There are two dga mapsA[t, dt] → A given by

e0 : h→ h|t=0 and e1 : h→ h|t=1.

Let F : A → A be a dga self-map ofA. Then F is said to be homotopic to the
identity if there exists a dga mapA → A[t, dt] such that its composition withe0
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is the identity map onA whereas its composition withe1 is F. Note that any map
A→ A[t, dt] could be written asF +Gdt whereF andG are mapsA→ A[t]. The
set of dga self-maps ofA homotopic to the identity forms a normal subgroup in the set
of all automorphisms ofA. The corresponding quotient group is the group ofhomotopy
self-equivalencesof A and will be denoted by hAut(A). It is isomorphic to the group
of homotopy classes of homotopy self-equivalences ofXQ, the rationalization of the
spaceX.

Theorem 3.4. Let X denote a nilpotent CW complex which is either finite or has a
finite Postnikov tower, and let A∗(X) denote its Sullivan–de Rham model. The group
hAut(A∗(X)) ∼= hAut(XQ) is the group ofQ-points of an affine algebraic group
scheme overQ whose Lie algebra isH 0

AQ(A∗(X), A∗(X)).

Remark 3.5. Sullivan [18] sketched the proof of the fact that hAut(XQ) is an alge-
braic group. The explicit identification of its Lie algebra in terms of André–Quillen
cohomology is new.

Proof. First of all we replaceA∗(X) by its minimal model denoted byA. Then
hAut(A) ∼= hAut(A∗(X)). By 3.1 and 3.2, the case of finite CW complex reduces to
that of the finite Postnikov tower. Thus we may assume thatA is a nilpotent minimal
algebra with generators of bounded degree. Now because of the finiteness assumptions
the group of algebra automorphisms ofA (i.e., not taking into account the differential)
is algebraic. Further the condition that an algebra mapA → A commutes withdA

is algebraic from which it follows that the groupZ of dga automorphisms ofA is
also an algebraic group overQ. It is obtained from itsreductivepart (coming from
the quadratic part of the differentialdA) by iterated extensions by theadditive group
scheme.
The Lie algebra of the groupZ is just the set of degree 0 derivations ofA which

commute with the differential inA. Therefore this is the Lie algebraZ0(L) of zero
degree cocycles ofL. The normal Lie subalgebraB0(L) of Z0(L) is nilpotent and
there is a corresponding normal subgroupB in the algebra self-maps ofA obtained by
exponentiatingB0(L). We will show that this subgroup consists precisely of those self-
maps which are homotopic to the identity. Thus, hAut(A) is the quotient of an affine
algebraic group by a normal affine algebraic subgroup and is thus affine algebraic.
Granting this for a moment, we see that the Lie algebra of hAut(A) = Z/B is

the quotient Lie algebraZ0(L)/B0(L) which is preciselyH 0
AQ(A, A) ∼= H 0

AQ(A∗(X),

A∗(X)) by the results of Section2.
Let F +Gdt : A→ A[t, dt] be a homotopy for whichF |t=0 = idA. First examine

the condition that it is a dga map. Forh1, h2 ∈ A we have:

(F +Gdt)(h1h2) = F (h1h2)+G(h1h2)dt

= F (h1)F (h2)+ [F (h1)G(h2)+G(h1)F (h2)]dt

= (F +Gdt)(h1)(F +Gdt)(h2).
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So we get two conditions:

(1) F (h1h2) = F (h1)F (h2) which means simply thatF is an algebra map and
(2) G(h1h2) = F (h1)G(h2)+G(h1)F (h2).

The second condition means thatG is an F-derivation. Settingt = 0 in the second
equation we get

G|t=0(h1h2) = h1G(g2)+G(h1)h2.

In other wordsG|t=0 is a usual derivation ofA.
Next, the condition thatF +Gdt is a map ofdifferential algebras means that

(F +Gdt) ◦ dA = dA[t,dt] ◦ (F +Gdt).

Applying both sides of this equation toh ∈ A and equating coefficients att anddt we
get two identities:

(1) F ◦ dA = dA ◦F ,
(2) �tF = G ◦ dA + dA ◦G = [G, dA].
The first condition above simply means thatF = F (t) commutes with the differential;
i.e., determines a family of maps of complexesA → A. Setting t = 0 in the second
equation we get�tF |t=0 = [G|t=0, dA] which means that�tF |t=0 is a coboundary
in L.
Now let F1 be an element inB. Then F can be expressed asF1 = exp([G0, dA])

where G0 is a derivation ofA. Let F = F (t) = exp(t[G0, dA]) and G = G(t) =
G0 exp(t[G0, dA]). Then (F (t), G(t)) is the homotopy fromF1 to id. Indeed,F (t) is
an algebra map for eacht andG(t) is anF (t)-derivation.
Conversely, suppose that(F (t), G(t)) is a homotopy from id toF (1), we need

to show thatF (1) belongs toB. Here we will use the fact thatA is nilpotent and
minimal but our proof extends under the condition thatF1 is homotopic to the identity
through automorphisms, that isF (t) is an automorphism for allt. This condition follows
automatically for minimal algebras since a weak equivalence between minimal nilpotent
algebras is necessarily an isomorphism.
We can write

F (t) = IdA +
∞∑

j=1
Fj tj .

SinceF : A→ A[t, dt] we must have that the sum is locally finite in the sense that
for a ∈ A, Fj (a) = 0 for j � 0. F−1 exists formally:

F−1(t) = IdA +
∞∑

i=1
(−1)i

 ∞∑
j=1

Fj tj

i

and this infinite sum is locally finite by the condition above.
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Since�tF = [G, dA] we have, taking into account thatF commutes withdA:

(�tF )F−1 = [G, dA]F−1
= G ◦ dA ◦F−1− dA ◦G ◦F−1

= [GF−1, dA].
SinceG(t) is anF (t)-derivationGF−1(t) will be a usual derivation. Noting that

(�tF (t))F−1(t) = �t logF (t)

we have the following equation:

�t logF (t) = [GF−1, dA].

Therefore

F (1) = exp

(∫ 1

0
[GF−1, dA]dt

)

= exp

[∫ 1

0
GF−1dt, dA

]
.

Here the integral is carried out formally. Moreover,
∫ 1
0 GF−1dt is a locally finite

expression and still a derivation. ThereforeF (1) is contained inB. �

Remark 3.6. One naturally wonders whether there is a relationship between the whole
complex C∗AQ(A∗(X), A∗(X)) together with its Gerstenhaber bracket and the space
Aut(X) of homotopy self-equivalences ofX. Schlessinger and Stasheff[17] provide an
affirmative answer to this question in the case whenX is simply connected. Namely,
they show that the complex consisting of derivations ofA lowering the degree by
k > 1 serves as a Lie model for the universal covering of the space BAut(X). That
implies that the Whitehead product in�>1 BAut(X) and the Gerstenhaber bracket in
H <0
AQ(A∗(X), A∗(X)) agree whereas our theorem compares�1 BAut(X) andH 0

AQ(A, A).
It seems likely that the theorem of Schlessinger–Stasheff could be extended to the
nilpotent case as well.

Remark 3.7. One can also express the tangent Lie algebra to hAut(XQ) in terms of
the Quillen or dg Lie algebra model ofX, at least whenX is simply connected (cf.[5]
concerning Quillen models). Namely, ifL(X) is a Quillen model forX consider the
Chevalley–Eilenberg complexC∗CE(L(X), Q) computing the Lie algebra cohomology
of L with trivial coefficients. ThenC∗CE(L(X), Q) is a cofibrant dga and serves as a
Sullivan model forX. Furthermore, the dg Lie algebra of derivations ofC∗CE(L(X), Q)
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coincides up to a shift of dimensions with the complexC∗CE(L(X), L(X)) comput-
ing the Lie algebra cohomology ofL(X) with coefficients in itself. The complex
C∗−1CE (L(X), L(X)) carries a dg Lie algebra structure so thatH 1

CE(L(X), L(X)), its
cohomology in the total degree 1 is an ungraded Lie algebra. We conclude that the Lie
algebra of hAut(XQ) is isomorphic toH 1

CE(L(X), L(X)).

Our next result is concerned with the more general problem of computing�iF (X, Y )

for i�1. HereX, Y are rational nilpotent CW-complexes of finite type andF (X, Y ) is
the space of continuous maps fromX into Y. Recall thatA∗(X) andA∗(Y ) denote the
Sullivan–de Rham algebras ofX andY, respectively. In view of the previous remark
it is natural to expect that the homotopy groups ofF (X, Y ) are expressed in terms
of the André–Quillen cohomology ofA∗(Y ) with values inA∗(X). When X = Y

and X is simply connected the corresponding statement was proved by Schlessinger
and Stasheff by combining their deformation theory with the fact that BAut(X) is the
classifying space forX-fibrations. This machinery is not available forX �= Y and we
use Proposition2.6 instead. Note also that the Gerstenhaber bracket no longer exists
on the complexC∗AQ(A, B) for A �= B.
Assume that there is given a mapf : X → Y which determines a basepoint in

F (X, Y ). The mapf induces a mapA∗(Y )→ A∗(X) makingA∗(X) into a differential
graded module overA∗(Y ).

Theorem 3.8. There is an isomorphism of sets

�n(F (X, Y ), f ) ∼= H−n
AQ (A∗(Y ), A∗(X)).

If n�2 then this is an isomorphism of Abelian groups.

Proof. Consider the de Rham algebraA∗(X×Sn) wheren�1. Clearly,A∗(X×Sn) is
weakly equivalent as a commutative dga to the dgaA∗(X)�A∗(X)[n] whereA∗(X)[n]
is the square-zero ideal which is isomorphic as aQ-vector space toA∗(X) and whose
grading is shifted byn.
Denoting byF∗(?,?) the function space betweenpointed topological spaces we have

an obvious homotopy fibre sequence:

F∗(Sn, F (X, Y ))→ F (Sn, F (X, Y ))→ F (∗, F (X, Y )) = F (X, Y ),

where the second arrow is induce by the inclusion of the basepoint inSn. (The basepoint
of F (X, Y ) is f and we takeF∗(Sn, F (X, Y )) to be the fibreover f.) Standard adjunction
gives the homotopy fibre sequence

F∗(Sn, F (X, Y ))→ F (X × Sn, Y )→ F (X, Y ). (2)

Consider now the categoryTX of spacesunder X, i.e., spaces supplied with a map
from X with morphisms being the obvious commutative triangles. This is a topological
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closed model category andX × Sn, Y ∈ TX. Note thatX × Sn is a cogroup object in
the homotopy category ofTX, abelian whenn > 1. LikewiseA∗(X×Sn) is (equivalent
to) an abelian group object inCA∗(X). For n > 1 the cogroup structure onX × Sn

corresponds to the group structure onA∗(X×Sn) under the Sullivan–de Rham functor
A∗ : TX → CA∗(X).
It follows that the spaceF∗(Sn, F (X, Y )) is weakly equivalent to the function space

in TX from X× Sn to Y. Therefore, denoting by[−,−]TX
the set of homotopy classes

of maps inTX we have

�nF∗(X, Y ) ∼= [X × Sn, Y ]TX
.

Since the homotopy category of finite type rational spaces inTX is anti-equivalent to
the homotopy category of finite type dga’sover A∗(X) we have

�nF∗(X, Y ) ∼= [A∗(Y ), A∗(X × Sn)]CA∗(X)

∼= [A∗(Y ), A∗(X)�A∗(X)[n]]CA∗(X)

∼= H 0
AQ(A∗(Y, )A∗(X)[n]) (by Proposition2.6)

∼= H−n
AQ (A∗(Y ), A∗(X)). �

Remark 3.9. If X is a point then the space of mapsX→ Y is simplyY. The previous
theorem then gives an identification of�∗(Y ) with H ∗AQ(A∗(Y ), Q). This is not sur-
prising since by Theorem2.4 H ∗AQ(A∗(Y ), Q) is identified with the homology of the
complex Der∗(M(A∗(Y ))). HereM(A∗(Y )) denotes the minimal model ofY. Clearly
this homology is simply the dual space of indecomposables inM(A∗(Y )) so we recover
a standard result in rational homotopy theory.
More generally, suppose that the mapf : X → Y is homotopic to the trivial map.

Thus, via the augmentation mapA∗(Y )→ Q, A∗(X) is anA∗(Y )-module. Then it is
easy to see that there is an isomorphism of complexes

C∗AQ(A∗(Y ), A∗(X)) ∼= C∗AQ(A∗(Y ), Q)⊗̂A∗(X).

Here ⊗̂ denotes completed tensor product. Therefore

H ∗AQ(A∗(Y ), A∗(X)) ∼= H ∗AQ(A∗(Y ), Q)⊗̂H ∗(X)

∼= �∗(Y )⊗̂H ∗(X).

So we recover an isomorphism obtained in[4]:

�n(F (X, Y ), f ) ∼=
∞∏

k=1
�k(Y )⊗H k−n(X).
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Remark 3.10. In the caseX andY are simply connected the considerations similar to
those in Remark3.7 yield a bijection of sets forn = 1 and an isomorphism of Abelian
groups forn > 1:

�nF (X, Y ) ∼= H 1−n(L(X), L(Y )),

whereL(X) andL(Y ) are Quillen models ofX andY, respectively. It seems likely that
the last isomorphism continues to hold under no finiteness assumptions on the rational
spacesX andY.
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Appendix A

In this appendix we collect certain facts about profinite Lie algebras which are used
in the main body of the paper. These facts appear to be standard but we are unaware
of any published references. Belowk denotes a fixed field of characteristic zero.

Definition A.1. A profinite set is an inverse limit of finite sets. Profinite sets form
a categoryPS in which morphisms are continuous maps between profinite sets with
respect to the inverse limit topology.

Remark A.2. It is well known thatPS is equivalent to the category of totally discon-
nected compact Hausdorff topological spaces. We will not use this fact, however.

Definition A.3. A profinite k-vector space is an inverse limit of finite dimensional
k-vector spaces. Profinite spaces form a categoryPVectk in which morphisms are con-
tinuous linear maps between profinite spaces with respect to the inverse limit topology.

Remark A.4. Note that the category of profinite vector spaces (as well as that of
profinite sets) is closed under taking arbitrary inverse limits.

Definition A.5. Let U = lim← U�, V = lim← V� be profinite spaces. Then their com-
pleted tensor productU⊗̂V is the following profinite space.

U⊗̂V = lim← �,�
U� ⊗ V�.

Proposition A.6. The categoryPVectk is anti-equivalent to the categoryVectk of dis-
crete k-vector spaces and all linear maps. Under this anti-equivalence the tensor prod-
uct in Vectk corresponds to the completed tensor product inPVectk.
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Proof. Note that any vector space is a direct limit of its finite-dimensional sub-
spaces. The functor Vectk �→ PVectk is specified by taking the dual vector space
V �→ V ∗ := Homk(V , k). The inverse functor associates to any profinite vector spaceU
its continuous dualU∗ := Homcont(U, k). The second statement of the proposition is
obvious. �

Corollary A.7. Any continuous surjective mapU → V in PVectk admits a continuous
splitting.

Proof. Indeed, using the anti-equivalence ofPVectk and Vectk we see that this is
equivalent to the statement that any monomorphism of discretek-vector spaces is split
which is clearly true. �
For a finite setX denote byk〈X〉 the vector space spanned by the elements inX.

More generally, letX = lim←X� be a profinite set and denote byk〈X〉 the profinite
vector space

k〈X〉 = lim← k〈X�〉.

Clearly this defines a functorPS �→ PVectk.

Proposition A.8. The functor X �→ k〈X〉 is left adjoint to the forgetful functor
PVectk �→ PS.

Proof. Let X = lim←X� be a profinite set andV = lim← V� be a profinite vector
space. Then we have isomorphisms of sets

PVectk(k〈X〉, V ) ∼= lim← �
lim→ �

Vectk(k〈X�〉, V�)

∼= PS(X, V ).

These isomorphisms are obviously natural inX andV. �

Definition A.9. A pronilpotent Lie algebra is an inverse limit of finite-dimensional
nilpotent Lie algebras. Pronilpotent Lie algebras form a categoryPLiek in which mor-
phisms are continuous Lie algebra maps. For clarity, we state everything for the un-
graded case, but the definitions and proofs go through in the graded case as well.

For a finite-dimensional vector spaceV denote byLV the free Lie algebra onV; it
is well known thatLV can be identified with the space of primitive elements inTV,
the tensor algebra onV. The Lie algebraLV has a filtration with respect to the bracket
length. Denote byLV the completion ofLV with respect to this filtration. Alternatively,
LV is the space of primitive elements in the completed tensor algebraT Vˆ :=∏∞i=0 V ⊗̂i .
Note thatLV is a pronilpotent Lie algebra and ifg is a finite-dimensional nilpotent Lie
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algebra then there is a natural bijection of sets:

PLiek(LV, g) ∼= Vectk(V , g). (A.1)

More generally, letV = lim← V� be a pronilpotent space. ThenLV := lim← LV�. We
will call LV the pro-free Lie algebra onV; it is still a pronilpotent Lie algebra. The
correspondenceV �→ LV is clearly a functorPVectk �→ PLiek.

Proposition A.10. The functor V �→LV is left adjoint to the forgetful functor
PLiek �→ PVectk.
Proof. Let LV = lim← LV� whereV� are finite-dimensional vector spaces andg =
lim←g� whereg� are finite-dimensional nilpotent Lie algebras. We have

PLiek(LV, g) ∼= lim← �
PLiek(LV, g�)

∼= lim← �
lim→ �

PLiek(LV�, g�)

∼= lim← �
lim→ �

Vectk(V�, g�) by formula (A.1)

∼= PVectk(V , g). �

Proposition A.11. Let g ∈ PLiek and LV be a pro-free Lie algebra. Then any contin-
uous surjective map of Lie algebrasg→ LV admits a continuous splittingLV → g.

Proof. By PropositionA.10 a continuous splitting ofg → LV in PLiek is equiv-
alent to the continuous splitting ofg→V in PVectk. The latter exists by
Corollary A.7. �

Definition A.12. A continuous derivation of a pronilpotent Lie algebrag is a continuous
map f : g → g which is a derivation ofg in the usual sense. The space of all
derivations ofg will be denoted by Der(g). Clearly Der(g) is itself a Lie algebra
under the commutator bracket.

Proposition A.13. Any continuous derivation of a pro-free Lie algebra LV is deter-
mined by its restriction on V so there is an isomorphism of sets

Der(LV ) ∼= PVectk(V , LV ).

Proof. The proof is similar to that of PropositionA.10. Instead of formula (A.1) we
use the easily checked bijection of sets

Der(LV ) ∼= Vectk(V , LV )

for a finite-dimensional spaceV. �



38 J. Block, A. Lazarev /Advances in Mathematics 193 (2005) 18–39

Next, we discuss the relation of pronilpotent Lie algebras and Lie coalgebras.

Definition A.14. A Lie coalgebra overk is a (discrete)k-vector spaceV together with
a map	 : V → V ⊗ V such that thek-dual mapV ∗ ⊗ V ∗ ↪→ (V ⊗ V )∗ → V ∗ is
skew-symmetric and satisfies the Jacobi identity. IfV is finite dimensional we say that
it is conilpotentif the corresponding Lie algebra onV ∗ is nilpotent. In general, we say
that a Lie coalgebra is conilpotent if it is a union of its finite-dimensional conilpotent
Lie subcoalgebras. We denote the category of conilpotent Lie coalgebras overk by
CLiek.

Proposition A.15. The categoryCLiek is anti-equivalent to the categoryPLiek.

Proof. The proof is the same as that of PropositionA.6. �
We define the a coderivation of a conilpotent Lie coalgebraV as the linear map

V → V such that the dual mapV ∗ → V ∗ is a continuous derivation of the associated
pro-free Lie algebraV ∗. Thus Coder(V ) ∼= Der(V ∗) is itself a Lie algebra.

Example A.16. Let H be a Hopf algebra overk and denote byI its augmentation
ideal. Let 
 : H → H ⊗ H be the diagonal inH and � : H ⊗ H → H ⊗ H be
the switch map. Denote by
′ : H → H ⊗ H the composition� ◦
. Then the map

−
′ : H → H ⊗H induces a Lie cobracket on the space of indecomposablesI/I2.
The corresponding Lie algebra will be isomorphic to the space of primitive elements in
H ∗. Now let H = T V , the tensor coalgebra on a spaceV endowed with the so-called
cut coproduct:


(v1⊗ . . .⊗ vn) =
∑

k

[v1⊗ . . .⊗ vk] ⊗ [vk+1⊗ . . .⊗ vn].

Together with the shuffle product the diagonal
 makesTV into a Hopf algebra. Its
space of indecomposables is the cofree Lie coalgebra whose dual is the pro-free Lie
algebraLV ∗.

We see, that the space of coderivations of a cofree Lie coalgebra on a spaceV is
identified with the space of linear mapsT V → V .
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