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1 Overview

If D is any linear operator on a vector space, we can define Exp(D) by

Exp(D) =

∞∑
n=0

1

n!
Dn. (1)

The sum converges if the operator is bounded. In other cases, such as differential operators
on Sobolev spaces, one has to deal with convergence on a case-by-case basis or work with
densely defined operators. If A and B are commuting operators, we have

Exp(A)Exp(B) = Exp(A+B). (2)

But the situation is bad in the non-commutative case. Expanding in terms of Taylor series
shows that

Exp(A)Exp(B) = Exp(A+B) + O(2) (3)

where O(2) consists of terms of quadratic and higher orders in A and B. It is a simple
matter to compute that in fact

Exp(A)Exp(B) = Exp(A+B +
1

2
[A,B] + O(3)) (4)

The Campbell-Baker-Hausdorff theorem asserts that O(3) can be written in terms of only
bracket terms (things like [A, [A,B]], [[B, [A,B]], B] and so forth) without terms like A2 or
ABA.

2 Linear Lie Groups and Differential Geometry

A linear Lie group G is a Lie group whose underlying topological space is a set of differen-
tiably varying matrices, with the group action being matrix multiplication. If Id ∈ G is the
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identity, derivatives of paths through the identity can be identified with matrices, and the
Lie derivative is simply the commutator of these matrices. In this way g = TIdG is a Lie
algebra of matrices.

The principle examples are the

GL(n, F) =
{
Mn×n

∣∣ det(Mn×n) 6= 0
}

(5)

where F is the base field R, C, or H (there is no analogue for the octonions). Via realification,
we need only really consider the case of base field R, although working with base fields R
or H is conceptually and computationally simpler in many cases. The groups Gl(n,R) are
of course non-compact; however they have a large number of important subgroups:

SL(n, R) =
{
M ∈ GL(n,R)

∣∣ det(M) = 1
}

(6)

which is still non-compact, but which has the compact subgroup

SO(n,R) =
{
M ∈ GL(n,R)

∣∣MTM = Id
}
. (7)

A second compact subgroup, in the even dimensional case, is the symplectic group

SP (2n, R) =
{
M ∈ GL(n,R)

∣∣MTJM = J
}

(8)

where

J =

(
0 Id
−Id 0

)
(9)

The Sp groups are related to both symplectic 2-forms and to unitary transformations of
quaternionic vector spaces. Under the commutator bracket, we have the corresponding real
Lie algebras

gl(n,R) = all real n× n matrices

sl(n,R) =
{
x ∈ gl(n,R)

∣∣ tr(x) = 0
}

o(n,R) =
{
x ∈ gl(n,R)

∣∣ xT + x = 0
}

sp(2n,R) =
{
x ∈ gl(2n,R)

∣∣ xTJ + Jx = 0
} (10)

The “realification” process alluded to above is the process of taking a complex n × n
matrix C = A+ iB and writing it as real 2n× 2n matrix

C =

(
A −B
B A

)
(11)

and noting that the algebra laws carry over. However, if one wishes to work directly with
complex matrices (as one often does), we have the groups

GL(n, C) = Invertible n× n complex matrices

SL(n, C) =
{
M ∈ GL(n,C)

∣∣ det(M) = 1
}

SO(n,C) =
{
M ∈ GL(n,C)

∣∣MTM = Id
}

SP (2n, C) =
{
M ∈ GL(n,C)

∣∣MTJM = Id
} (12)
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where J is the same as before. In addition we have the very important unitary and special
unitary groups

U(n) =
{
M ∈ GL(n,C)

∣∣MT
M = 1

}
SU(n) = U(n) ∩ SL(n,C).

(13)

We easily see that

gl(n,C) = gl(n,R)⊗R C
sl(n,C) = sl(n,R)⊗ C
o(n,C) = o(n,R)⊗ C
sp(n,C) = sp(n,R)⊗ C.

(14)

However, the unitary and special unitary algebras are real algebras

u(n) =
{
x ∈ gl(n,C)

∣∣ xT + x = 0
}

su(n) =
{
x ∈ sl(n,C)

∣∣ xT + x = 0
}
,

(15)

as the condition xT + x = 0 is not preserved by complex multiplication. However

gl(n,C) = u(n)⊗ C
sl(n,C) = su(n)⊗ C

(16)

Many other special relations carry over; for instance unitary matrices are precisely the
matrices that are both symplectic and orthogonal. If we define

Sp(n, H) =
{
W ∈ GL(n,H)

∣∣WT
W = 1

}
(17)

then Sp(n,H) is naturally embedded in SP (2n,C) as a compact subgroup, and Sp(2n,C)/
Sp(n,H) is contractible (so Sp(n,H) is a maximal compact subgroup).

2.1 Exponential maps

A linear Lie group G has two exponential maps from g to G, the first, denoted “exp” defined
using the flow of the identity under left-invariant vector fields, and the other, denoted “Exp”
defined using the exponential operator. These are easily seen to be the same operator. Note
that for v ∈ g, we have d

dt

∣∣
t=0

Exp(tv) = v, so at time 0 the paths t 7→ Exp(tv) and
t 7→ exp(tv) share the same initial vector. Then note that the tangent vectors to both paths
are invariant under push-forward by left-translation.

2.2 Riemannian Geometry

Let G be a Lie group with Riemannian metric g. Obviously g can be made left-invariant by
placing a non-degenerate bilinear form g on g and then requiring gp(v, w) = g(Lp−1∗v, Lp−1∗w).

3



Therefore, with g invariant under pullback along left-translations, the right-invariant fields
are Killing fields.

Any compact Lie group has a bi-invariant metric. Such a metric is characterized by
being both left-invariant, and having left-invariant fields as Killing fields. Thus

g([v, w], z) = g(v, [w, z]) (18)

for left-invariant fields v, w, and z (aka “associativity”). In this case, the Koszul formula

2g (∇xy, z) = ([x, y], z) − ([y, z], x) + ([z, x], y) (19)

= ([x, y], z) (20)

shows that

∇xy =
1

2
[x, y]. (21)

In particular the left-invariant fields integrate out to geodesics. Thus the exponential map
from Lie group theory is the same as the exponential map of Riemannian geometry.

3 Examples

3.1 SU(2)

For certain reasons, this may be the most important example of a compact Lie group.

Matrices M ∈ C(2) are unitary if M
T
M = Id and special if det(M) = 1. These are the

matrices of the form

M =

(
z −w
w z

)
where |z|2 + |w|2 = 1 (22)

The standard topology gives this group the differentiable structure of S3. The Lie algebra
su(2) is the real span of the three trace-free antihermitian matrices

~x1 =
√
−1σ1 =

√
−1

(
0 1
1 0

)
(23)

~x2 =
√
−1σ2 =

√
−1

(
0 i
−i 0

)
(24)

~x3 =
√
−1σ3 =

√
−1

(
1 0
0 −1

)
(25)

which is the Lie algebra of purely imaginary quaternions under the commutator bracket,
which is isomorphic to the cross product algebra.
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Computing the adjoint maps on the Lie algebra su(2), we find

ad~x1
=

 0 0 0
0 0 −2
0 2 0


ad~x2

=

 0 0 2
0 0 0
−2 0 0


ad~x3

=

 0 −2 0
2 0 0
0 0 0


(26)

so the Killing form is the negative definite bilinear form

κ =

 −8 0 0
0 −8 0
0 0 −8

 (27)

and we put the bi-invariant Riemannian metric g = − 1
8κ on SU(2), which gives the group

constant curvature +1.

3.1.1 Hopf Fibration

The vectors ~x1, ~x2, ~x3 are represented by paths through the identity τ 7→ Exp(τxi). Moving
by left translation, at a point M ∈ SU(2) the representative paths are τ 7→ MExp(τxi),
which are the matrices Mxi. Moving by right translation, at a point M ∈ SU(2) the
representative paths are τ 7→MExp(τxi), which are the matrices xiM .

To get a feel for the difference between left- and right-invariant vector fields, consider
the association between SU(2) and the set S3 ∈ C2:(

z −w
w z

)
←→ (z, w) ∈ C2. (28)

The left-invariant vector field from ~x3 gives rise to the diffeomorphisms by right-translation
ϕτ (M) = RExp(τ

√
−1σ3)

M = MExp(−τ
√
−1σ3), or

ϕτ

(
z −w
w z

)
=

(
zeiτ −weiτ
weiτ zeiτ

)
or ϕτ (z, w) = (zeiτ , weiτ ) (29)

so that flow lines of the left-invariant field ~x3 correspond to fibers of the Hopf map (z, w) 7→
zw−1.

The right-invariant vector field from ~x3 gives rise to the diffeomorphisms by left-
translation ϕτ (M) = LExp(−τ

√
−1σ3)

M = Exp(−τ
√
−1σ3)M , or

ϕτ

(
z −w
w z

)
=

(
zeiτ −we−iτ
we−iτ zeiτ

)
or ϕτ (z, w) = (zeiτ , we−iτ ) (30)
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so that flow lines of the left-invariant field ~x3 correspond to fibers of the anti-Hopf map
(z, w) 7→ zw−1.

3.1.2 SU(2) as a spin group

Now consider an arbitrary trace-free anti-hermtian matrix, which can be interpretted as a
vector in su(2):

~v = a~x1 + b~x2 + c~x3 =

(
−ci −b− ci
b− ci ci

)
. (31)

Note that det(~v) = a2 + b2 + c2 = |v|2 = − 1
8κ(v, v) is the norm-square of the vector. The

metric is then

g(~v, ~w) =
1

2
(det(~v + ~w) − det(~v) − det(~w)) . (32)

In particular, if M ∈ SU(2) (so in particular conjugation preserves), we have that AdM :
su(2)→ su(2) is in fact orthogonal. Therefore

Ad : SU(2) → SO(3). (33)

Because SU(2) is connected, the image is in a connected subgroup O(3), so we have a Lie
algebra epimorphism The kernel of the Ad map is easily seen to be ±Id, giving a 2-1 covering
map; indeed this is a universal covering map of SO(3), as SU(2) is simply-connected.

The double cover of a special orthogonal group SO(n) is called its associated spinor
group, denoted Spin(n). We therefore have Spin(3) = SU(2).

3.2 SL(2,R)

For certain reasons, SL(2,R) may be the most important example of a non-compact Lie
group. Considering its Lie algebra sl(2,R) = spanR {h, x, y}, we have

adh =

 0 0 0
0 2 0
0 0 −2


adx =

 0 0 1
−2 0 0
0 0 0


ady =

 0 −1 0
0 0 0
2 0 0


(34)
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so that

κ =

 8 0 0
0 0 4
0 4 0

 (35)

In analogy with the SU(2) case, a good bi-invariant metric is

g = −1

8
κ (36)

which is Lorenzian, of signature (+,−,−) (a time-like unit vector is x − y, two space-like

unit vectors are h and x+ y). Setting ~v = a~h+ b~x+ c~y again we compute

det(~v) = −a2 − bc = −1

8
κ(~v, ~v) = ‖~v‖2 (37)

so that

g(~v, ~w) =
1

2
(det(~v + ~w) − det(~v) − det(~w)) . (38)

Because any other bi-invariant metric gives rise to an associative bilinear form on sl2, and
because any two associative forms are equal up to constant multiplication (which must be
real if it comes from a metric), it follows that SL(2,R) has no bi-invariant Riemannian
metric.

Now consider the adjoint representation Ad : SL(2,R)→ Hom(sl(2,R)). We have that
conjugation with M ∈ SL(2,R) preserves determinant, so therefore preserves the metric,
giving us a map into O(1, 3), which is easily seen to be a surjection

Ad : SL(2,R) → SO+(1, 2) (39)

into the orthochronous special orthogonal group. The kernel is, again, seen to be ±Id, so
this is a 2-1 covering map. Therefore

SL(2,R) ≈ Spin(1, 2). (40)

Note however SL(2,R) is not simply-connected. Its Lorenzian metric is Einsteinian with
scalar curvature −2, so its universal cover is a model of (1 + 2)-dimensional anti-deSitter
space (an empty universe with negative cosmological constant, or the Lorenzian analogue
of hyperbolic space).

Of course SL(2,R) has left-invariant Riemannian metrics; the natural geometry is of
an S1-bundle over hyperbolic space, and is one of Thurston’s eight model geometries.

3.3 SL(2,C)

We can prove the existence of a 2-1 map SL(2,C)→ SO+(1, 3) (also implying that SO+(1, 3) ≈
PSL(2,C)). Start with any anti-Hermitian matrix

~x =

(
−i(t+ z) −y − ix
y − ix −i(t− z)

)
= t ~x0 + x~x1 + y ~x2 + z ~x3 (41)
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(under the commutator bracket, this is the Lie algebra of U(2), which is reductive but not
semi-simple). Then

−det ~x = t2 − x2 − y2 − z2 (42)

is the Lorenzian norm-square. The Lorenzian inner product is therefore

(~x, ~y) = −1

2
(det(~x+ ~y) − det(~x) − det(~y)) . (43)

Now SL(2,C) acts on the set of anti-hermitian matrices via the conjugation isomorphism

Conj : SL(2,C)→ SO+(1, 3), ConjM (~x) = M~xM
T
. (44)

This is clearly norm-preserving, although ConjM is generally not an algebra homomorphism.
It is easy to see that ker(Conj) = {±Id}, so this is again a 2-1 covering map. Further,
SL(2,C) is simply-connected, so

SL(2,C) ≈ Spin(1, 3) (45)

and we have found another spin group.
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