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1 Overview

If D is any linear operator on a vector space, we can define Exzp(D) by
Exp(D) = L D" 1
w(D) = Y D" (1)
n=0

The sum converges if the operator is bounded. In other cases, such as differential operators
on Sobolev spaces, one has to deal with convergence on a case-by-case basis or work with
densely defined operators. If A and B are commuting operators, we have

Exp(A) Exp(B) = Exzp(A+ B). (2)

But the situation is bad in the non-commutative case. Expanding in terms of Taylor series
shows that

Exp(A) Ezp(B) = Exp(A+ B) + O(2) (3)

where O(2) counsists of terms of quadratic and higher orders in A and B. It is a simple
matter to compute that in fact

1
Exp(A) Exzp(B) = Exp(A+ B+ i[A’ B] + 0(3)) (4)
The Campbell-Baker-Hausdorff theorem asserts that O(3) can be written in terms of only

bracket terms (things like [A, [A, B]], [[B, [A, B]], B] and so forth) without terms like A% or
ABA.

2 Linear Lie Groups and Differential Geometry

A linear Lie group G is a Lie group whose underlying topological space is a set of differen-
tiably varying matrices, with the group action being matrix multiplication. If Id € G is the



identity, derivatives of paths through the identity can be identified with matrices, and the
Lie derivative is simply the commutator of these matrices. In this way g = T74G is a Lie
algebra of matrices.

The principle examples are the
GL(n, F) = { Myuxn | det(Myxy,) # 0} (5)

where F is the base field R, C, or H (there is no analogue for the octonions). Via realification,
we need only really consider the case of base field R, although working with base fields R
or H is conceptually and computationally simpler in many cases. The groups Gl(n,R) are
of course non-compact; however they have a large number of important subgroups:

SL(n,R) = {M € GL(n,R) | det(M) = 1} (6)
which is still non-compact, but which has the compact subgroup

SO(n,R) = {M € GL(n,R) | M"M = Id}. (7)
A second compact subgroup, in the even dimensional case, is the symplectic group

SP@2n,R) = {M € GL(n,R) | M"JM = J} (8)

0 Id
J = ( —Id 0 ) 9)
The Sp groups are related to both symplectic 2-forms and to unitary transformations of

quaternionic vector spaces. Under the commutator bracket, we have the corresponding real
Lie algebras

where

gl(n,R) = all real n X n matrices

sl(n,R) = {z € gl(n,R) | tr(z)=0}

o(n,R) = {ze€gl(nR)|2" +2=0}
sp(2n,R) = {z€gl(2n,R) |2"J + Jz =0}

(10)

The “realification” process alluded to above is the process of taking a complex n x n
matrix C' = A+ ¢B and writing it as real 2n x 2n matrix

C:(é1 _AB> (11)

and noting that the algebra laws carry over. However, if one wishes to work directly with
complex matrices (as one often does), we have the groups

GL(n, C) = Invertible n x n complex matrices
SL(n,C) = {M € GL(n,C) | det(M) = 1}
SO(n,C) = {M € GL(n,C) | M"M = Id}
SP(2n,C) = {M € GL(n,C) | M"JM = Id}



where J is the same as before. In addition we have the very important unitary and special
unitary groups

Un) = {MeGL(n,(C) | MM = 1}

(13)
SU(n) = U(n)NSL(n,C).
We easily see that
gl(n,C) = gl(n,R) @r C
sl(n,C) = sl(n,R)®@C (14)
o(n,C) = o(n,R)®C
sp(n,C) = sp(n,R) ® C.
However, the unitary and special unitary algebras are real algebras
uin) = {zegl(n,C)|z" +2 =0} (15)
suin) = {z€sl(n,C)|z" +2 = 0},
as the condition Z7 + 2 = 0 is not preserved by complex multiplication. However
[(m,C) = un)®C
B1(n,C) = u(n) "

sl(n,C) = su(n)®C

Many other special relations carry over; for instance unitary matrices are precisely the
matrices that are both symplectic and orthogonal. If we define

Sp(n, H) = {WeGL(n,H) W = 1} (17)

then Sp(n,H) is naturally embedded in SP(2n,C) as a compact subgroup, and Sp(2n,C)/
Sp(n, H) is contractible (so Sp(n,H) is a maximal compact subgroup).

2.1 Exponential maps

A linear Lie group G has two exponential maps from g to G, the first, denoted “exp” defined
using the flow of the identity under left-invariant vector fields, and the other, denoted “Exp”
defined using the exponential operator. These are easily seen to be the same operator. Note
that for v € g, we have % ’tZOExp(tv) = v, so at time O the paths ¢t — Fxp(tv) and
t — exp(tv) share the same initial vector. Then note that the tangent vectors to both paths
are invariant under push-forward by left-translation.

2.2 Riemannian Geometry

Let G be a Lie group with Riemannian metric g. Obviously g can be made left-invariant by
placing a non-degenerate bilinear form g on g and then requiring g, (v, w) = g(L,-1,v, L,-1,w).



Therefore, with g invariant under pullback along left-translations, the right-invariant fields
are Killing fields.

Any compact Lie group has a bi-invariant metric. Such a metric is characterized by
being both left-invariant, and having left-invariant fields as Killing fields. Thus

g([vaw]v'z) = g(va [U),Z]) (18)

for left-invariant fields v, w, and z (aka “associativity”). In this case, the Koszul formula

29(Vay, 2) = ([,9], 2) — (v, 2], 2) + ([2,2], y) (19)
= ([z,¥], 2) (20)

shows that
Vey = %[CE,y] (21)

In particular the left-invariant fields integrate out to geodesics. Thus the exponential map
from Lie group theory is the same as the exponential map of Riemannian geometry.

3 Examples

3.1 SU(2)

For certain reasons, this may be the most important example of a compact Lie group.
—T

Matrices M € C(2) are unitary if M M = Id and special if det(M) = 1. These are the

matrices of the form

M = ( o w) where |22+ |wf* =1 (22)
w oz

The standard topology gives this group the differentiable structure of S3. The Lie algebra
su(2) is the real span of the three trace-free antihermitian matrices

# :ﬁalzﬁ<$é> (23)
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i3 = \/?103=\/T1<(£_01) (25)

which is the Lie algebra of purely imaginary quaternions under the commutator bracket,
which is isomorphic to the cross product algebra.



Computing the adjoint maps on the Lie algebra su(2), we find

00 O
adz, = 00 -2
0 2 0
0 0 2
adz, = 0 00 (26)
-2 0 0
0 -2 0
adg, = 2 0 0
0 0 O
so the Killing form is the negative definite bilinear form
-8 0 0
K = 0 -8 O (27)
0o 0 -8
and we put the bi-invariant Riemannian metric g = —%H on SU(2), which gives the group

constant curvature +1.

3.1.1 Hopf Fibration

The vectors &1, ¥a, T3 are represented by paths through the identity 7 — Exp(7x;). Moving
by left translation, at a point M € SU(2) the representative paths are 7 — M Exp(rx;),
which are the matrices Mxz;. Moving by right translation, at a point M € SU(2) the
representative paths are 7 — M FExp(tx;), which are the matrices z; M.

To get a feel for the difference between left- and right-invariant vector fields, consider
the association between SU(2) and the set S* € C2:

( * w) s (z,w) € C~ (28)

w z

The left-invariant vector field from #'3 gives rise to the diffeomorphisms by right-translation
or (M) = Rppp(r =10y M = M Exp(—7y/—103), or

soT(Z ‘“’) ( ‘w> o pr(mw) = (7, weT)  (29)

w Z wel  zelT

so that flow lines of the left-invariant field Z5 correspond to fibers of the Hopf map (z,w) —
-1
2wt

The right-invariant vector field from #3 gives rise to the diffeomorphisms by left-
translation o, (M) = Lg,p(_ry/=Tos)M = Exp(—7v/—103)M, or

o e I (e R R A T I CY

w oz we zel



so that flow lines of the left-invariant field Z3 correspond to fibers of the anti-Hopf map

(z,w) > 2w L.

3.1.2 SU(2) as a spin group

Now consider an arbitrary trace-free anti-hermtian matrix, which can be interpretted as a
vector in su(2):

e, - S —ci  —b—ci
U = aZ1 +b¥y +c¥3 = <b—ci ci > (31)
Note that det(?) = a® + b* + ¢ = |[v|? = —%k(v,v) is the norm-square of the vector. The
metric is then
1
g(v, W) = 3 (det(V+ W) — det(¥) — det(w)) . (32)

In particular, if M € SU(2) (so in particular conjugation preserves), we have that Ady :
s5u(2) — su(2) is in fact orthogonal. Therefore

Ad: SU(2) — SO(3). (33)

Because SU(2) is connected, the image is in a connected subgroup O(3), so we have a Lie
algebra epimorphism The kernel of the Ad map is easily seen to be +1d, giving a 2-1 covering
map; indeed this is a universal covering map of SO(3), as SU(2) is simply-connected.

The double cover of a special orthogonal group SO(n) is called its associated spinor
group, denoted Spin(n). We therefore have Spin(3) = SU(2).

3.2 SL(2,R)

For certain reasons, SL(2,R) may be the most important example of a non-compact Lie
group. Considering its Lie algebra s[(2,R) = spang {h, z,y}, we have

00 0
ady = [ 0 2 0
00 —2
0 0 1
ady, = [ =2 0 0 (34)
0 0 0
0 -1 0
ady = [ 0 0 0
2 0 0



so that

8 00
Kk = 0 0 4 (35)
0 4 0
In analogy with the SU(2) case, a good bi-invariant metric is
1
g =gk (36)
which is Lorenzian, of signature (+,—, —) (a time-like unit vector is x — y, two space-like
unit vectors are h and x + y). Setting ¢ = ah + bZ + ¢ff again we compute
1
det(¥) = —a® —bc = fgﬁ(ﬁ, 7) = |72 (37)
so that
1
g(U, W) = 3 (det(v + @) — det(v) — det(w)). (38)

Because any other bi-invariant metric gives rise to an associative bilinear form on sls, and
because any two associative forms are equal up to constant multiplication (which must be
real if it comes from a metric), it follows that SL(2,R) has no bi-invariant Riemannian
metric.

Now consider the adjoint representation Ad : SL(2,R) — Hom(sl(2,R)). We have that
conjugation with M € SL(2,R) preserves determinant, so therefore preserves the metric,
giving us a map into O(1, 3), which is easily seen to be a surjection

Ad : SL(2,R) — SO7™(1,2) (39)
into the orthochronous special orthogonal group. The kernel is, again, seen to be +1d, so
this is a 2-1 covering map. Therefore

SL(2,R) =~ Spin(1,2). (40)

Note however SL(2,R) is not simply-connected. Its Lorenzian metric is Einsteinian with
scalar curvature —2, so its universal cover is a model of (1 + 2)-dimensional anti-deSitter
space (an empty universe with negative cosmological constant, or the Lorenzian analogue
of hyperbolic space).

Of course SL(2,R) has left-invariant Riemannian metrics; the natural geometry is of
an S'-bundle over hyperbolic space, and is one of Thurston’s eight model geometries.

3.3 SL(2,C)

We can prove the existence of a 2-1 map SL(2,C) — SO™(1,3) (also implying that SO*(1,3) ~
PSL(2,C)). Start with any anti-Hermitian matrix

L —ilt+2) —y—ix = S " ~
r = ( y— iz z(tz)) =t%y + T + yTo + 273 (41)



(under the commutator bracket, this is the Lie algebra of U(2), which is reductive but not
semi-simple). Then

—det ¥ = t? — 2% — y? — 22 (42)
is the Lorenzian norm-square. The Lorenzian inner product is therefore

(7, 9) = (det(Z + ¢) — det(Z) — det(y)). (43)

1

2
Now SL(2,C) acts on the set of anti-hermitian matrices via the conjugation isomorphism

Conj: SL(2,C) — SOT(1,3),  Conjn(z) = MZM . (44)

This is clearly norm-preserving, although C'onj,s is generally not an algebra homomorphism.
It is easy to see that ker(Conj) = {£Id}, so this is again a 2-1 covering map. Further,
SL(2,C) is simply-connected, so

SL(2,C) ~ Spin(1,3) (45)

and we have found another spin group.
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