# Lecture 2 - Lie Groups, Lie Algebras, and Geometry 

January 14, 2013

## 1 Overview

If $D$ is any linear operator on a vector space, we can define $\operatorname{Exp}(D)$ by

$$
\begin{equation*}
\operatorname{Exp}(D)=\sum_{n=0}^{\infty} \frac{1}{n!} D^{n} . \tag{1}
\end{equation*}
$$

The sum converges if the operator is bounded. In other cases, such as differential operators on Sobolev spaces, one has to deal with convergence on a case-by-case basis or work with densely defined operators. If $A$ and $B$ are commuting operators, we have

$$
\begin{equation*}
\operatorname{Exp}(A) \operatorname{Exp}(B)=\operatorname{Exp}(A+B) \tag{2}
\end{equation*}
$$

But the situation is bad in the non-commutative case. Expanding in terms of Taylor series shows that

$$
\begin{equation*}
\operatorname{Exp}(A) \operatorname{Exp}(B)=\operatorname{Exp}(A+B)+O(2) \tag{3}
\end{equation*}
$$

where $O(2)$ consists of terms of quadratic and higher orders in $A$ and $B$. It is a simple matter to compute that in fact

$$
\begin{equation*}
\operatorname{Exp}(A) \operatorname{Exp}(B)=\operatorname{Exp}\left(A+B+\frac{1}{2}[A, B]+O(3)\right) \tag{4}
\end{equation*}
$$

The Campbell-Baker-Hausdorff theorem asserts that $O(3)$ can be written in terms of only bracket terms (things like $[A,[A, B]],[[B,[A, B]], B]$ and so forth) without terms like $A^{2}$ or $A B A$.

## 2 Linear Lie Groups and Differential Geometry

A linear Lie group $G$ is a Lie group whose underlying topological space is a set of differentiably varying matrices, with the group action being matrix multiplication. If $I d \in G$ is the
identity, derivatives of paths through the identity can be identified with matrices, and the Lie derivative is simply the commutator of these matrices. In this way $\mathfrak{g}=T_{I d} G$ is a Lie algebra of matrices.

The principle examples are the

$$
\begin{equation*}
G L(n, \mathbb{F})=\left\{M_{n \times n} \mid \operatorname{det}\left(M_{n \times n}\right) \neq 0\right\} \tag{5}
\end{equation*}
$$

where $\mathbb{F}$ is the base field $\mathbb{R}, \mathbb{C}$, or $\mathbb{H}$ (there is no analogue for the octonions). Via realification, we need only really consider the case of base field $\mathbb{R}$, although working with base fields $\mathbb{R}$ or $\mathbb{H}$ is conceptually and computationally simpler in many cases. The groups $G l(n, \mathbb{R})$ are of course non-compact; however they have a large number of important subgroups:

$$
\begin{equation*}
S L(n, \mathbb{R})=\{M \in G L(n, \mathbb{R}) \mid \operatorname{det}(M)=1\} \tag{6}
\end{equation*}
$$

which is still non-compact, but which has the compact subgroup

$$
\begin{equation*}
S O(n, \mathbb{R})=\left\{M \in G L(n, \mathbb{R}) \mid M^{T} M=I d\right\} \tag{7}
\end{equation*}
$$

A second compact subgroup, in the even dimensional case, is the symplectic group

$$
\begin{equation*}
S P(2 n, \mathbb{R})=\left\{M \in G L(n, \mathbb{R}) \mid M^{T} J M=J\right\} \tag{8}
\end{equation*}
$$

where

$$
J=\left(\begin{array}{cc}
0 & I d  \tag{9}\\
-I d & 0
\end{array}\right)
$$

The $S p$ groups are related to both symplectic 2 -forms and to unitary transformations of quaternionic vector spaces. Under the commutator bracket, we have the corresponding real Lie algebras

$$
\begin{align*}
& \mathfrak{g l}(n, \mathbb{R})=\text { all real } n \times n \text { matrices } \\
& \mathfrak{s l}(n, \mathbb{R})=\{x \in \mathfrak{g l}(n, \mathbb{R}) \mid \operatorname{tr}(x)=0\}  \tag{10}\\
& \mathfrak{o}(n, \mathbb{R})=\left\{x \in \mathfrak{g l}(n, \mathbb{R}) \mid x^{T}+x=0\right\} \\
& \mathfrak{s p}(2 n, \mathbb{R})=\left\{x \in \mathfrak{g l}(2 n, \mathbb{R}) \mid x^{T} J+J x=0\right\}
\end{align*}
$$

The "realification" process alluded to above is the process of taking a complex $n \times n$ matrix $C=A+i B$ and writing it as real $2 n \times 2 n$ matrix

$$
C=\left(\begin{array}{cc}
A & -B  \tag{11}\\
B & A
\end{array}\right)
$$

and noting that the algebra laws carry over. However, if one wishes to work directly with complex matrices (as one often does), we have the groups

$$
\begin{align*}
& G L(n, \mathbb{C})=\text { Invertible } n \times n \text { complex matrices } \\
& S L(n, \mathbb{C})=\{M \in G L(n, \mathbb{C}) \mid \operatorname{det}(M)=1\} \\
& S O(n, \mathbb{C})=\left\{M \in G L(n, \mathbb{C}) \mid M^{T} M=I d\right\}  \tag{12}\\
& S P(2 n, \mathbb{C})=\left\{M \in G L(n, \mathbb{C}) \mid M^{T} J M=I d\right\}
\end{align*}
$$

where $J$ is the same as before. In addition we have the very important unitary and special unitary groups

$$
\begin{align*}
& U(n)=\left\{M \in G L(n, \mathbb{C}) \mid \bar{M}^{T} M=1\right\}  \tag{13}\\
& S U(n)=U(n) \cap S L(n, \mathbb{C}) .
\end{align*}
$$

We easily see that

$$
\begin{align*}
& \mathfrak{g l}(n, \mathbb{C})=\mathfrak{g l}(n, \mathbb{R}) \otimes_{\mathbb{R}} \mathbb{C} \\
& \mathfrak{s l}(n, \mathbb{C})=\mathfrak{s l}(n, \mathbb{R}) \otimes \mathbb{C} \\
& \mathfrak{o}(n, \mathbb{C})=\mathfrak{o}(n, \mathbb{R}) \otimes \mathbb{C}  \tag{14}\\
& \mathfrak{s p}(n, \mathbb{C})=\mathfrak{s p}(n, \mathbb{R}) \otimes \mathbb{C} .
\end{align*}
$$

However, the unitary and special unitary algebras are real algebras

$$
\begin{align*}
\mathfrak{u}(n) & =\left\{x \in \mathfrak{g l}(n, \mathbb{C}) \mid \bar{x}^{T}+x=0\right\} \\
\mathfrak{s u}(n) & =\left\{x \in \mathfrak{s l}(n, \mathbb{C}) \mid \bar{x}^{T}+x=0\right\} \tag{15}
\end{align*}
$$

as the condition $\bar{x}^{T}+x=0$ is not preserved by complex multiplication. However

$$
\begin{align*}
\mathfrak{g l}(\mathfrak{n}, \mathbb{C}) & =\mathfrak{u}(n) \otimes \mathbb{C} \\
\mathfrak{s l}(\mathfrak{n}, \mathbb{C}) & =\mathfrak{s u}(n) \otimes \mathbb{C} \tag{16}
\end{align*}
$$

Many other special relations carry over; for instance unitary matrices are precisely the matrices that are both symplectic and orthogonal. If we define

$$
\begin{equation*}
S p(n, \mathbb{H})=\left\{W \in G L(n, \mathbb{H}) \mid \bar{W}^{T} W=1\right\} \tag{17}
\end{equation*}
$$

then $S p(n, \mathbb{H})$ is naturally embedded in $S P(2 n, \mathbb{C})$ as a compact subgroup, and $S p(2 n, \mathbb{C}) /$ $S p(n, \mathbb{H})$ is contractible (so $S p(n, \mathbb{H})$ is a maximal compact subgroup).

### 2.1 Exponential maps

A linear Lie group $G$ has two exponential maps from $\mathfrak{g}$ to $G$, the first, denoted "exp" defined using the flow of the identity under left-invariant vector fields, and the other, denoted "Exp" defined using the exponential operator. These are easily seen to be the same operator. Note that for $v \in \mathfrak{g}$, we have $\left.\frac{d}{d t}\right|_{t=0} \operatorname{Exp}(t v)=v$, so at time 0 the paths $t \mapsto \operatorname{Exp}(t v)$ and $t \mapsto \exp (t v)$ share the same initial vector. Then note that the tangent vectors to both paths are invariant under push-forward by left-translation.

### 2.2 Riemannian Geometry

Let $G$ be a Lie group with Riemannian metric $g$. Obviously $g$ can be made left-invariant by placing a non-degenerate bilinear form $g$ on $\mathfrak{g}$ and then requiring $g_{p}(v, w)=g\left(L_{p^{-1} *} v, L_{p^{-1} *} w\right)$.

Therefore, with $g$ invariant under pullback along left-translations, the right-invariant fields are Killing fields.

Any compact Lie group has a bi-invariant metric. Such a metric is characterized by being both left-invariant, and having left-invariant fields as Killing fields. Thus

$$
\begin{equation*}
g([v, w], z)=g(v,[w, z]) \tag{18}
\end{equation*}
$$

for left-invariant fields $v, w$, and $z$ (aka "associativity"). In this case, the Koszul formula

$$
\begin{align*}
2 g\left(\nabla_{x} y, z\right) & =([x, y], z)-([y, z], x)+([z, x], y)  \tag{19}\\
& =([x, y], z) \tag{20}
\end{align*}
$$

shows that

$$
\begin{equation*}
\nabla_{x} y=\frac{1}{2}[x, y] . \tag{21}
\end{equation*}
$$

In particular the left-invariant fields integrate out to geodesics. Thus the exponential map from Lie group theory is the same as the exponential map of Riemannian geometry.

## 3 Examples

## 3.1 $S U(2)$

For certain reasons, this may be the most important example of a compact Lie group. Matrices $M \in \mathbb{C}(2)$ are unitary if $\bar{M}^{T} M=I d$ and special if $\operatorname{det}(M)=1$. These are the matrices of the form

$$
M=\left(\begin{array}{cc}
z & -\bar{w}  \tag{22}\\
w & \bar{z}
\end{array}\right) \quad \text { where } \quad|z|^{2}+|w|^{2}=1
$$

The standard topology gives this group the differentiable structure of $\mathbb{S}^{3}$. The Lie algebra $\mathfrak{s u}(2)$ is the real span of the three trace-free antihermitian matrices

$$
\begin{align*}
& \vec{x}_{1}=\sqrt{-1} \sigma_{1}=\sqrt{-1}\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)  \tag{23}\\
& \vec{x}_{2}=\sqrt{-1} \sigma_{2}=\sqrt{-1}\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)  \tag{24}\\
& \vec{x}_{3}=\sqrt{-1} \sigma_{3}=\sqrt{-1}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \tag{25}
\end{align*}
$$

which is the Lie algebra of purely imaginary quaternions under the commutator bracket, which is isomorphic to the cross product algebra.

Computing the adjoint maps on the Lie algebra $\mathfrak{s u}(2)$, we find

$$
\begin{align*}
& a d_{\vec{x}_{1}}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -2 \\
0 & 2 & 0
\end{array}\right) \\
& a d_{\vec{x}_{2}}=\left(\begin{array}{ccc}
0 & 0 & 2 \\
0 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right)  \tag{26}\\
& a d_{\vec{x}_{3}}=\left(\begin{array}{ccc}
0 & -2 & 0 \\
2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{align*}
$$

so the Killing form is the negative definite bilinear form

$$
\kappa=\left(\begin{array}{ccc}
-8 & 0 & 0  \tag{27}\\
0 & -8 & 0 \\
0 & 0 & -8
\end{array}\right)
$$

and we put the bi-invariant Riemannian metric $g=-\frac{1}{8} \kappa$ on $S U(2)$, which gives the group constant curvature +1 .

### 3.1.1 Hopf Fibration

The vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ are represented by paths through the identity $\tau \mapsto \operatorname{Exp}\left(\tau x_{i}\right)$. Moving by left translation, at a point $M \in S U(2)$ the representative paths are $\tau \mapsto M E \operatorname{Exp}\left(\tau x_{i}\right)$, which are the matrices $M x_{i}$. Moving by right translation, at a point $M \in S U(2)$ the representative paths are $\tau \mapsto M \operatorname{Exp}\left(\tau x_{i}\right)$, which are the matrices $x_{i} M$.

To get a feel for the difference between left- and right-invariant vector fields, consider the association between $S U(2)$ and the set $\mathbb{S}^{3} \in \mathbb{C}^{2}$ :

$$
\left(\begin{array}{cc}
z & -\bar{w}  \tag{28}\\
w & \bar{z}
\end{array}\right) \quad \longleftrightarrow \quad(z, w) \in \mathbb{C}^{2}
$$

The left-invariant vector field from $\vec{x}_{3}$ gives rise to the diffeomorphisms by right-translation $\varphi_{\tau}(M)=R_{E x p\left(\tau \sqrt{-1} \sigma_{3}\right)} M=M E x p\left(-\tau \sqrt{-1} \sigma_{3}\right)$, or

$$
\varphi_{\tau}\left(\begin{array}{cc}
z & -\bar{w}  \tag{29}\\
w & \bar{z}
\end{array}\right)=\left(\begin{array}{cc}
z e^{i \tau} & -\overline{w e^{i \tau}} \\
w e^{i \tau} & \overline{z e^{i \tau}}
\end{array}\right) \quad \text { or } \quad \varphi_{\tau}(z, w)=\left(z e^{i \tau}, w e^{i \tau}\right)
$$

so that flow lines of the left-invariant field $\vec{x}_{3}$ correspond to fibers of the Hopf map $(z, w) \mapsto$ $z w^{-1}$.

The right-invariant vector field from $\vec{x}_{3}$ gives rise to the diffeomorphisms by lefttranslation $\varphi_{\tau}(M)=L_{E x p\left(-\tau \sqrt{-1} \sigma_{3}\right)} M=\operatorname{Exp}\left(-\tau \sqrt{-1} \sigma_{3}\right) M$, or

$$
\varphi_{\tau}\left(\begin{array}{cc}
z & -\bar{w}  \tag{30}\\
w & \bar{z}
\end{array}\right)=\left(\begin{array}{cc}
z e^{i \tau} & -\overline{w e^{-i \tau}} \\
w e^{-i \tau} & \overline{z e^{i \tau}}
\end{array}\right) \quad \text { or } \quad \varphi_{\tau}(z, w)=\left(z e^{i \tau}, w e^{-i \tau}\right)
$$

so that flow lines of the left-invariant field $\vec{x}_{3}$ correspond to fibers of the anti-Hopf map $(z, w) \mapsto z \bar{w}^{-1}$.

### 3.1.2 $S U(2)$ as a spin group

Now consider an arbitrary trace-free anti-hermtian matrix, which can be interpretted as a vector in $\mathfrak{s u}(2)$ :

$$
\vec{v}=a \vec{x}_{1}+b \vec{x}_{2}+c \vec{x}_{3}=\left(\begin{array}{cc}
-c i & -b-c i  \tag{31}\\
b-c i & c i
\end{array}\right) .
$$

Note that $\operatorname{det}(\vec{v})=a^{2}+b^{2}+c^{2}=|v|^{2}=-\frac{1}{8} \kappa(v, v)$ is the norm-square of the vector. The metric is then

$$
\begin{equation*}
g(\vec{v}, \vec{w})=\frac{1}{2}(\operatorname{det}(\vec{v}+\vec{w})-\operatorname{det}(\vec{v})-\operatorname{det}(\vec{w})) \tag{32}
\end{equation*}
$$

In particular, if $M \in S U(2)$ (so in particular conjugation preserves), we have that $A d_{M}$ : $\mathfrak{s u}(2) \rightarrow \mathfrak{s u}(2)$ is in fact orthogonal. Therefore

$$
\begin{equation*}
A d: S U(2) \rightarrow S O(3) \tag{33}
\end{equation*}
$$

Because $S U(2)$ is connected, the image is in a connected subgroup $O(3)$, so we have a Lie algebra epimorphism The kernel of the $A d$ map is easily seen to be $\pm I d$, giving a 2-1 covering map; indeed this is a universal covering map of $S O(3)$, as $S U(2)$ is simply-connected.

The double cover of a special orthogonal group $S O(n)$ is called its associated spinor group, denoted $\operatorname{Spin}(n)$. We therefore have $\operatorname{Spin}(3)=S U(2)$.

## $3.2 \quad S L(2, \mathbb{R})$

For certain reasons, $S L(2, \mathbb{R})$ may be the most important example of a non-compact Lie group. Considering its Lie algebra $\mathfrak{s l}(2, \mathbb{R})=\operatorname{span}_{\mathbb{R}}\{h, x, y\}$, we have

$$
\begin{align*}
a d_{h} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right) \\
a d_{x} & =\left(\begin{array}{ccc}
0 & 0 & 1 \\
-2 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)  \tag{34}\\
a d_{y} & =\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right)
\end{align*}
$$

so that

$$
\kappa=\left(\begin{array}{lll}
8 & 0 & 0  \tag{35}\\
0 & 0 & 4 \\
0 & 4 & 0
\end{array}\right)
$$

In analogy with the $S U(2)$ case, a good bi-invariant metric is

$$
\begin{equation*}
g=-\frac{1}{8} \kappa \tag{36}
\end{equation*}
$$

which is Lorenzian, of signature $(+,-,-)$ (a time-like unit vector is $x-y$, two space-like unit vectors are $h$ and $x+y)$. Setting $\vec{v}=a \vec{h}+b \vec{x}+c \vec{y}$ again we compute

$$
\begin{equation*}
\operatorname{det}(\vec{v})=-a^{2}-b c=-\frac{1}{8} \kappa(\vec{v}, \vec{v})=\|\vec{v}\|^{2} \tag{37}
\end{equation*}
$$

so that

$$
\begin{equation*}
g(\vec{v}, \vec{w})=\frac{1}{2}(\operatorname{det}(\vec{v}+\vec{w})-\operatorname{det}(\vec{v})-\operatorname{det}(\vec{w})) \tag{38}
\end{equation*}
$$

Because any other bi-invariant metric gives rise to an associative bilinear form on $\mathfrak{s l}_{2}$, and because any two associative forms are equal up to constant multiplication (which must be real if it comes from a metric), it follows that $S L(2, \mathbb{R})$ has no bi-invariant Riemannian metric.

Now consider the adjoint representation $\operatorname{Ad}: S L(2, \mathbb{R}) \rightarrow \operatorname{Hom}(\mathfrak{s l}(2, \mathbb{R}))$. We have that conjugation with $M \in S L(2, \mathbb{R})$ preserves determinant, so therefore preserves the metric, giving us a map into $O(1,3)$, which is easily seen to be a surjection

$$
\begin{equation*}
A d: S L(2, \mathbb{R}) \rightarrow S O^{+}(1,2) \tag{39}
\end{equation*}
$$

into the orthochronous special orthogonal group. The kernel is, again, seen to be $\pm I d$, so this is a 2-1 covering map. Therefore

$$
\begin{equation*}
S L(2, \mathbb{R}) \approx \operatorname{Spin}(1,2) \tag{40}
\end{equation*}
$$

Note however $S L(2, \mathbb{R})$ is not simply-connected. Its Lorenzian metric is Einsteinian with scalar curvature -2 , so its universal cover is a model of $(1+2)$-dimensional anti-deSitter space (an empty universe with negative cosmological constant, or the Lorenzian analogue of hyperbolic space).

Of course $S L(2, \mathbb{R})$ has left-invariant Riemannian metrics; the natural geometry is of an $\mathbb{S}^{1}$-bundle over hyperbolic space, and is one of Thurston's eight model geometries.

## $3.3 S L(2, \mathbb{C})$

We can prove the existence of a 2-1 map $S L(2, \mathbb{C}) \rightarrow S O^{+}(1,3)$ (also implying that $S O^{+}(1,3) \approx$ $P S L(2, \mathbb{C})$ ). Start with any anti-Hermitian matrix

$$
\vec{x}=\left(\begin{array}{cc}
-i(t+z) & -y-i x  \tag{41}\\
y-i x & -i(t-z)
\end{array}\right)=t \vec{x}_{0}+x \vec{x}_{1}+y \vec{x}_{2}+z \vec{x}_{3}
$$

(under the commutator bracket, this is the Lie algebra of $U(2)$, which is reductive but not semi-simple). Then

$$
\begin{equation*}
-\operatorname{det} \vec{x}=t^{2}-x^{2}-y^{2}-z^{2} \tag{42}
\end{equation*}
$$

is the Lorenzian norm-square. The Lorenzian inner product is therefore

$$
\begin{equation*}
(\vec{x}, \vec{y})=-\frac{1}{2}(\operatorname{det}(\vec{x}+\vec{y})-\operatorname{det}(\vec{x})-\operatorname{det}(\vec{y})) \tag{43}
\end{equation*}
$$

Now $S L(2, \mathbb{C})$ acts on the set of anti-hermitian matrices via the conjugation isomorphism

$$
\begin{equation*}
\text { Conj : SL }(2, \mathbb{C}) \rightarrow S O^{+}(1,3), \quad \operatorname{Conj}_{M}(\vec{x})=M \vec{x} \bar{M}^{T} \tag{44}
\end{equation*}
$$

This is clearly norm-preserving, although $\operatorname{Conj} j_{M}$ is generally not an algebra homomorphism. It is easy to see that $\operatorname{ker}(\operatorname{Conj})=\{ \pm I d\}$, so this is again a $2-1$ covering map. Further, $S L(2, \mathbb{C})$ is simply-connected, so

$$
\begin{equation*}
S L(2, \mathbb{C}) \approx \operatorname{Spin}(1,3) \tag{45}
\end{equation*}
$$

and we have found another spin group.

