
Lecture 1 - Basic Concepts I - Riemannian Geometry

July 28, 2009

These lectures are entirely expository and no originality is claimed. Where necessary,
references are indicated in the text.

1 Collapsing

Collapse in Riemannian geometry is the phenomenon of injectivity radii limiting to zero,
while sectional curvatures remain bounded.

Any compact Riemannian manifold converges to a point by multiplying distances by a
constant δ and letting δ → 0. However only in the flat case does this lead to collapse with
bounded curvature, as sectional curvatures scale by δ−2. What is meant by “converge to
a point” will be made precise later, but note that such a manifold’s volume and diameter
both converge to zero.

However many Riemannian manifolds do admit some collapsing process that leaves
curvature bounded, and most of these manifolds admit no flat metric whatsoever. The first
example, both historically, and in these notes, is the family of Berger 3-spheres. This is a
sequence of metrics on S3 that converges, in an appropriate sense, to the round metric of
half radius on S2.

For reasons that are not apparent at the outset, Lie groups are fundamental objects
in the study of collapse. However in a way this is fortunate. Lie groups, and their finite
quotients, have so much structure that a precise understanding of their geometry is often
possible. In the first two lectures, we review the aspects of Lie group theory, differential
topology, and Riemannian geometry most needed for our study.

The definitions involved in the study of collapse are, unfortunately, rather complex in
places. To put a statement of Isaacs’ into different words, the heart of mathematics is exam-
ples and theorems. Definitions, as they are just putting a name to something, are essentially
empty of content. But they are a necessary evil, as one does, after all, have to know what
one is talking about. In this series of lectures I will put an emphasis on examples, where one
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obtains a real feel for collapsing. The fundamental theorems in the subject are the Bieber-
bach theorem, Gromov’s almost flat manifold theorem, the Cheeger-Gromov F-structure
theorem, Fukaya’s theorems, and the Cheeger-Fukaya-Gromov N-structure theorem.

2 Why Study Collapsing?

In mathematics, we seek information on large classes of objects (eg. all compact n-manifolds
with bounded diameter, curvature, and injectivity radius, or all 4-dimensional compact
Einstein manifolds with two-sided volume bounds), rather than on single objects (as, for
instance, in the work of engineers). Still, it is much easier to study individual objects. If
we want to know if a property inheres in a certain class of objects, it is useful to take a
sequence of objects, then ask questions about properties of the limit.

But in geometry, in what sense can limits be taken? Under what circumstances do
they exist?

Recall the statement of the Cheeger diffeofiniteness theorem. The set of Riemannian
manifolds with bounded sectional curvature, bounded diameter, and bounded injectivity
radius has finitely many diffeomorphism types. Thus, given a sequence of such manifolds,
a subsequence can be chosen with the same underlying differentiable structure. Limits of
tensors, such as the metric, can then be taken in an ordinary sense, modulo diffeomorphism.
On any compact manifold, one of the three quantities can be controlled simply by scaling;
it is normal to assume max |sec| = 1. If the diameter is unbounded, limits can still be
taken, once a fixed point is specified. However, if the injectivity radius collapses, there is
no immediate way to know what can happen.

Another fundamental difficulty comes from geometric analysis. It is very natural to
study elliptic differential equations on Riemannian manifolds. Elementary (and indispens-
able) tools in the analysis on manifolds include integration by parts, the maximum principle,
the Bochner technique, and the Sobolev inequality (which, for instance, makes Moser itera-
tion possible). While the other tools enjoy unrestricted applicability on compact manifolds,
the Sobolev inequality is equivalent to the isoperimetric inequality, so if injectivity radii
degenerate, the isopoerimetric inequality degenerates as well. The loss of this fundamental
tool has broad consequences in, for instance, the study of special metrics such as Einstein
metrics or extremal Kähler metrics.

Unfortunately it is difficult, if not impossible, to control the injectivity radius in terms
of either local (curvature) or global (topological) data. It can be thought of as a, semi-local,
or semi-global variable, that is nearly (though admittedly not totally) independent of other
geometric and topological data. Since injectivity radii cannot themselves be controlled, then
understanding geometric and topological phenomena in the presence of collapsing injectivity
radii is a fundamental question of Riemannian geometry.
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3 Riemannian Geometry

3.1 The Metric

The metric on a manifold is the basic object of Riemannian geometry. Given a differentiable
manifold M , the metric g is simply an assignment of a bilinear map TpM ⊗ TpM → R at
each point p ∈M with the following properties:

i) g(v,w) = g(w,v) (symmetry)

ii) g(v,v) > 0 when v 6= 0 (positive definiteness), and

iii) g varies differentiably.

Example: S3 and stereographic projection

We will look at a very concrete case, that of the ordinary sphere. As a subset of R4, it
is defined to be

S4 , { (x, y, z, w) ∈ R4 | x2 + y2 + z2 + w2 = 1 }. (1)

A vector v = α ∂
∂x +β ∂

∂y +γ ∂
∂z + δ ∂

∂w at the point (x, y, z, w) lies tangent to S3 if αx+βy+

γz + δw = 0. We take the inner product at T(x,y,z,w) S3 to be simply the restriction of the

R4 inner product to tangent vectors. That is, if v1,v2 ∈ T(x,y,z,w) S3 are

v1 = α1
∂

∂x
+ β1

∂

∂y
+ γ1

∂

∂z
+ δ1

∂

∂w

v2 = α2
∂

∂x
+ β2

∂

∂y
+ γ2

∂

∂z
+ δ2

∂

∂w

(2)

then we define

g(v1, v2) = α1α2 + β1β2 + γ1γ2 + δ1δ2 (3)

It is easily seen that (i)-(iii) are satisfied by this definition.

This definition of the metric is elegant, but is awkward for carrying out computations
(although one has the Gauss and Codazzi equations). For explicit computations, it is useful
to choose a coordinate system. One particularly natural coordinate system is obtained by
stereographic projection, which is a mapping of S2 \{(0, 0, 0, 1)} diffeomorphically onto R3.
Letting (a, b, c) be the coordinates on R3, then the diffeomorphism ϕ : S3 \{(0, 0, 0, 1)} → R3

and its inverse ϕ−1 are

ϕ(x, y, z, w) =

(
x

1− w
,

y

1− w
,

z

1− w

)
ϕ−1(a, b) =

(
2a

r2 + 1
,

2b

r2 + 1
,

2c

r2 + 1
,
r2 − 1

r2 + 1

) (4)
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where we have abbreviated r2 = a2 + b2 + c2. Viewing the coordinate components a, b, x,
y, and z strictly as functions on S3, we have the identifications

a =
x

1− w
, b =

y

1− w
, c =

z

1− w

x =
2a

r2 + 1
, y =

2b

r2 + 1
, z =

2c

r2 + 1
, w =

r2 − 1

r2 + 1

(5)

To compute the metric as a function of the coordinates (a, b), we compute

∂

∂a
=

∂x

∂a

∂

∂x
+
∂y

∂a

∂

∂y
+
∂z

∂a

∂

∂z
+
∂w

∂a

∂

∂w

=
2r2 + 2− 4a2

(r2 + 1)2
∂

∂x
+

−4ab

(r2 + 1)2
∂

∂y
+

−4ac

(r2 + 1)2
∂

∂z
+

4a

(r2 + 1)2
∂

∂z

= (1− x2 − w)
∂

∂x
− xy

∂

∂y
− xz

∂

∂z
+ x(1− w)

∂

∂w

∂

∂b
= −yx ∂

∂x
+ (1− y2 − w)

∂

∂y
− yz

∂

∂z
+ y(1− w)

∂

∂w

∂

∂c
= −zx ∂

∂x
− zy

∂

∂y
+ (1− z2 − w)

∂

∂z
+ z(1− w)

∂

∂w

(6)

Therefore

g

(
∂

∂a
,
∂

∂a

)
= (1− x2 − w)2 + (xy)2 + (xz)2 + (x− wx)2 = (1− w)2

=
4

(r2 + 1)2

g

(
∂

∂b
,
∂

∂b

)
=

4

(r2 + 1)2
, g

(
∂

∂c
,
∂

∂c

)
=

4

(r2 + 1)2

(7)

and all other inner products are zero. Therefore the metric in the (a, b, c)-coordinate system
is written

g =
4

(a2 + b2 + c2 + 1)2
(da⊗ da + db⊗ db + dc⊗ dc) (8)

Note that g is conformal to the Euclidean metric on R3.

3.2 The Connection

The second most basic object in Riemannian geometry is the connection ∇. Given a vector
field X, the connection is an operator ∇X :

⊗r,s
TM →

⊗r,s
TM , and the tensor field

∇XT is called the covariant derivative of the tensor T in the X direction. The operator ∇X
is defined by requiring that it have the following characteristics:

I) ∇ is tensorial in the first variable (the “X” variable)
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II) ∇ is linear in the second variable

III) ∇ is the ordinary derivative on functions: ∇Xf = X(f) (equivalently, ∇f = df)

IV) ∇ obeys the Leibnitz rule for contractions: ∇X (iY η) = i∇XY η + iY∇Xη where Y
is a vector field and η is a covector field, as well as for tensor products: ∇X(T ⊗S) =
(∇XT )⊗ S + T ⊗ (∇XS) where T and S are arbitrary tensor fields.

V) the metric is covariant-constant: ∇Xg ≡ 0

VI) ∇ is “torsion-free”: ∇XY − ∇YX = [X, Y ].

An operator ∇ that satisfies (I)-(IV) is called an affine connection (or just a connection),
if it also satisfies (V) it is called a metric connection, and if it satisfies (I)-(VI) it is called
the Riemannian or Levi-Civita connection. From (I)-(VI), the covariant derivative of any
vector field Y is determined uniquely by the Koszul formula

2 〈∇XY, Z〉 = X 〈Y, Z〉 + Y 〈X, Z〉 − Z 〈X, Y 〉
+ 〈[X,Y ], Z〉 − 〈[Y,Z], X〉 + 〈[Z,X], Y 〉 .

(9)

Example: S3
Using the coordinates (a, b, c) on S3, the Koszul formula allows us to compute

∇∂/∂a∂/∂a = − 2a

r2 + 1

∂

∂a
+

2b

r2 + 1

∂

∂b
+

2c

r2 + 1

∂

∂c

∇∂/∂b∂/∂b =
2a

r2 + 1

∂

∂a
− 2b

r2 + 1

∂

∂b
+

2c

r2 + 1

∂

∂c

∇∂/∂a∂/∂b = ∇∂/∂b∂/∂a = − 2b

r2 + 1

∂

∂a
− 2a

r2 + 1

∂

∂b

∇∂/∂a∂/∂c = ∇∂/∂c∂/∂a = − 2c

r2 + 1

∂

∂a
− 2a

r2 + 1

∂

∂c

∇∂/∂b∂/∂c = ∇∂/∂c∂/∂b = − 2b

r2 + 1

∂

∂c
− 2c

r2 + 1

∂

∂b

(10)

3.3 Curvature

The third and final basic object in Riemannian geometry is the Riemann tensor. At a point
p the Riemann tensor Rm : TpM ⊗ TpM ⊗ TpM → TpM is defined by

Rm (X, Y ) Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z. (11)

This tensor measures the failure of mixed second partial derivatives of vector fields to com-
mute. Thus the Riemann tensor is fundamentally an analytic object.

Another viewpoint is that the Riemann tensor at a point measures infinitesimal holon-
omy, or, intuitively, the failure of parallel translation to be Euclidean-like. Let X and Y be
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vector fields. Imagine a path starting from a point p, following the integral line for X for a
length of time t, then an integral line for Y for time t, then X again for time −t, then Y for
time −t. One terminates at a point p′, which is not necessarily the starting point. However,
dist(p′, p)/t→ 0 as t↘ 0; sometimes this is stated “boxes always close to first order”. Now
imagine parallel-transporting the vector Z around the four segments to p′, and then back
to p via a short geodesic. At p we have 2 vectors, the original vector Z, and the translated

vector Z ′ which is a function of t. It can be shown that Rm(X,Y )Z = − 1
2
d2

dt2Z
′.

A third interpretation of the Riemann tensor, equally fundamental, is that it measures
the “bending” of the manifold at a point. Thus the Riemann tensor controls geometric
phenomena such as volume growth of balls and the lensing of geodesics. The sectional, or
Gaussian, curvature of the infinitesimal plane spanned by the vectors X and Y at a point is

sec(X, Y ) =
〈Rm(X, Y )Y, X〉
|X|2|Y |2 − 〈X, Y 〉2

. (12)

The Riemann tensor can be recovered if sec is known for all X and Y .

The Riemann tensor contains all the local geometric information on a Riemannian
manifold. In coordinates, Rm is an n× n× n× n array at each point, and so carries a huge
amount of information (of course there are some redundancies, due to the Bianchi identity,
etc). A curvature tensor that is more manageable, but has less information in general that
Rm is the Ricci tensor

Ricij = Rmijkl g
jk. (13)

Even simpler yet is the scalar curvature function

R = Ricij g
ij (14)

which unfortunately carries very little information in general.

Example: S3

One computes (preferably with the help of a computer) that

Rm

(
∂

∂a
,
∂

∂b

)
∂

∂b
=

4

(r2 + 1)2
∂

∂a

Rm

(
∂

∂b
,
∂

∂c

)
∂

∂c
=

4

(r2 + 1)2
∂

∂b

Rm

(
∂

∂c
,
∂

∂a

)
∂

∂a
=

4

(r2 + 1)2
∂

∂c

sec

(
∂

∂a
,
∂

∂b

)
= 1, sec

(
∂

∂b
,
∂

∂c

)
= 1, sec

(
∂

∂c
,
∂

∂a

)
= 1.

(15)

Warped Products
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A very fundamental example is the 2-dimensional warped product. Consider the topo-
logical manifold I × S1, where I = (a, b) is an open interval. We can use coordinates (r, θ),
where r is the projection on to I, and θ ∈ (−π, π) parametrizes the circle outside of a single
point. Note that the fields ∂

∂θ and dθ can be taken to be global.

We put a metric on I × S1 that leaves distances along on I unchanged but scales
distances along S1 by a function of r alone. In coordinates we have

g = dr ⊗ dr + f(r)2 dθ ⊗ dθ (16)

for some positive smooth f : I → R. We easily compute the connections

∇∂/∂r∂/∂r = 0

∇∂/∂θ∂/∂θ = −f(r) f ′(r)
∂

∂r

∇∂/∂θ∂/∂r = ∇∂/∂r∂/∂θ =
f ′(r)

f(r)

∂

∂θ
,

(17)

the non-zero components of the Riemann tensor

Rm

(
∂

∂r
,
∂

∂θ

)
∂

∂θ
= −f(r)f ′′(r)

∂

∂r

Rm

(
∂

∂θ
,
∂

∂r

)
∂

∂r
=

f ′′(r)

f(r)

∂

∂θ
,

(18)

and the sectional curvature

sec

(
∂

∂r
,
∂

∂θ

)
= −f

′′(r)

f(r)
. (19)

Notice that this provides an enormous number of examples of collapse with bounded curva-
ture, for if f is multiplied by any constant c, then sec is unchanged. Letting c→ 0 provides
examples of 2-dimensional Riemannian manifolds that “converge” to line segments.

4 Exercises

1) Verify (10), (15), (17), (18), and (19).

2) Write down a warped product metrics for R2, S2, and H2 (hyperbolic 2-space). (Hint:
set −f ′′/f equal to a constant.)

3) There is an obvious R-linear vector space isomorphism R4 → C⊕C, so we can view

S3 as sitting inside C2. Give C2 the coordinates (z, w). The z-axis is defined to be
the complex line {w = 0}, and similarly for the w-axis. Note that the intersection of

S3 with either axis is a circle. Under stereographic projection, what are the images of
the z and w axes?
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4) The 3-sphere is enormously symmetric. The embedding S2 ↪→ C2 gives us one view of
this. There is a free, isometric S1-action on S3 given by the restriction of the action
eiθ : C2 → C2, (z, w) 7→ (eiθz, eiθw) to S3 (note that no free action of S1 exists on S2).
This is called the Hopf action. Under stereographic projection, what are the orbits?

5) There is a mapping S3 → C∗ (where C∗ = C∪{∞} and ∞ is the point at infinty),
called the Hopf map, given by (z, w) 7→ zw−1. Since C∗ is the same as S2, we can
regard this as a map S3 → S2. Prove that this is a submersion, and that the fibers of
this submersion are just the orbits of the Hopf action.
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