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Theorem 0.1 Given a manifold Mn, there is a decomposition Mn = Kn ∪ Hn where H
admits an F-structure of positive rank and if p ∈ K, then there is a c = c(n) <∞ such that

sup
y∈Bcip (p)

|Rmy|1/2ip ≥ c−1.

We first try to explain the idea behind the proof. The constant c(n) is chosen so
that supy∈Bcip (p)

|Rmy |1/2ip < c−1 implies Bcip(p) is almost flat in the sense that there

exists a quasi-isometry from some flat manifold into some large subset (compared to the
injectivity radius) of Bcip(p). We construct (elementary) F-structures on flat manifolds,
which then pass to these almost-flat balls. A technical argument remains on how to “glue”
the F-structures together on overlaps. This is achieved by showing that the F-structures’
local actions are “almost” the same, in the C1-sense. Then a stability theorem is used: if
a Lie group has two actions that are “close enough” in the C1-sense, the actions can be
perturbed so as to coincide.

Essentially the orbits of the F-structure correspond to the “most collapsed directions.”

1 Locally collapsed regions

Given y ∈M and R > 0 define the quantity v(y,R) by

v(y, S) , sup
x∈BSiy (y)

|Rmx|
1
2 iy.

By an h-quasi-isometry (for h ∈ [1,∞)) between Riemannian manifolds U and V will mean
a homeomorphism f : U → V differentiable of degree at least Ck,α, so that 1

hgU ≤ f∗gV ≤
hgU . Of course a 1-quasi-isometry is an isometry.
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Lemma 1.1 Given h > 0, k <∞, there is a δ = δ(h, k, n) and an R = R(h, k, n) so that if
v(y, δ−1) < δ then there is a flat manifold F with soul S so that

i) an h-quasi-isometry f : U → UF from some subset y ∈ U ⊂ Bkiy (y) a neighborhood
UF ⊂ F , where also U contains B 1

4kiy
(y),

ii) dist(f(y), S) ≤ R,

iii) Diam(S) ≤ R.

Pf
Assume (i) is false. Put δi = i−1. By scale invariance we can assume that iy = 1 and

|Rm | < 1/i on Bi(y), but there is no h-quasi-isometry from any neighborhood of y to any
tubular neighborhood Bi·iy (S) of any soul in any flat manifold.

But by Cheeger-Gromov convergence, as i → ∞ the sets Bi(y) converge in the C1,α-
topology to a complete flat manifold with unit injectivity radius at a point.

Thus for large enough i, there is indeed an h-quasi-isometry from Bi(y) to a subset of
this flat manifold.

If (ii) or (iii) is false, we can repeat the argument. However, in the limiting flat manifold
the soul is a finite distance away, so it is clear that we can chose a subset Ui ⊂ Bi(y) with
y ∈ Ui that maps onto some tubular neighborhood. �

The h-quasi-isometry is actually too weak a notion. It is important that holonomies
converge, not just distances. However since the convergence above occurs in the C1,α-
topology (in particular, in the C1 topology), holonomies around geodesic loops based at y
converge to the respective holonomies in the flat case.

2 Joining of locally defined F-structures

In this section we look at how F-structures are defined locally, and how they are joined
together. Pick h > 0. Let p ∈ M and suppose curvature satisfies |Rm | < δ i−2p inside
Bipδ−1(p). Then there is some flat manifold, Yp, and an h-quasi-isometry between a some
large subset of Up ⊂ Bipδ−1(p) and a large subset of Yp.

There is an F-structure on Yp, however we do not want the entire F-structure. We will
consider a loop at p to be a “short loop” if it is a geodesic lasso and its length is a definite
multiple of the injectivity radius. Corresponding to short geodesic loops at p are short
almost-geodesic loops in Yp, which can be homotoped to short (nontrivial!) geodesic loops.
If the loops at p have small holonomy, then (by Bieberbach’s theorem) the corresponding
loops in Yp have zero holonomy and therefore correspond to geodesic loops in the covering
torus, so correspond to an orbit of the F-structure. Let γ1, . . . , γk be the loops at p with
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small holonomy (say, maximal rotation angle < 1/4); a simple argument shows this list is
nontrivial. Corresponding to these are loops γ̃1, . . . , γ̃k in Yp, corresponding to which is an
F-structure of constant rank k. It is this F-structure which passes down to a neighborhood
near p.

Now consider two nearby points p, q with overlapping neighborhoods Up, Uq. Let
γp1 , . . . , γ

p
k and γq1 , . . . , γ

q
l be the short loops at p, q, respectively, with maximal holonomy

angle < 1
4 ; these lead to possibly different F-structures on Up ∩ Uq, although Up ∩ Uq is

saturated for either structure.

We claim is that a third structure exists on a neighborhood of Up ∩Uq, which contains
both previous structures. One can “slide” the loops γp1 , . . . , γ

p
k and γq1 , . . . , γ

q
l to a point

p′ ∈ Up ∩ Uq. At p′ these loops still have small holonomy and short length, so define an
F-structure on a neighborhood of p′.

Now we can replace Up with Up − Uq and the same with Up. Repeating this process,
we get at least one F-structure defined in a neighborhood of each point, so that if two such
structures overlap, then one contains the other.

If |Rm |1/2ix is small enough, the orbits of the F-structures will converge in the C1

sense. A stability theorem (Grove-Karcher (1973)) says that if two Lie groups produce
actions that are close enough in the C1-sense, the actions can be perturbed so as to coincide.
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