
Lecture 2 - Basic Concepts II - Lie Groups

July 28, 2009

1 Differential Topology

The basic objects of differential topology are manifolds and diffeomorphisms, which we shall
assume familiarity with, including the concepts of differentiability, tangent spaces, tensors,
forms, and so on. One purely topological notion that will be useful in the future is that of
the Lie derivative, which is a differentiable (not Riemannian) version of taking a derivative
with respect to a vector field.

The Lie derivative of a tensor T is defined by taking the derivative of the pullbacks of
T along some smooth family of diffeomorphisms. Let X be a vector field and ϕt its flow.
This means that

Xp(f) =
d

ds

∣∣∣
s=t

f(ϕs(ϕ−t(p))). (1)

for any t ∈ R. If T ∈
⊗p,0

TM then we define

LXT = − d

dt
ϕt∗T (2)

where ϕt∗T indicates the push-forward of T along the flow. If T ∈
⊗0,q

TM then

LXT =
d

dt
ϕ∗tT (3)

In the general case where T ∈
⊗p,q

TM , for instance if T = Y1 ⊗ · · · ⊗ Yp ⊗ η1 ⊗ · · · ⊗ ηq is
a simple tensor, we define

LXT = lim
t→0

Y1 ⊗ · · · ⊗ Yp ⊗ (ϕ∗t η
1)⊗ · · · ⊗ (ϕ∗t η

q) − (ϕt∗Y1)⊗ · · · ⊗ (ϕt∗Yp)⊗ η1 ⊗ · · · ⊗ ηq

t
(4)

and extend by linearity.

The definition of the Lie derivatuve involves no concepts except diffeomorphisms; the
Lie derivative is a concept of differential topology, not geometry. If X,Y are vector fields, f
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is a function, and η is any p-form, and T is any tensor, then the following extremely useful
facts can be shown:

i) LXf = X(f)

ii) LXY = [X,Y ]

iii) [LX , d] η = 0

iv) [LX , iY ] η = i[X,Y ]η

v) Cartan’s formula: LXη = [d, ix]η

vi) The Jacobi identity: L[X,Y ]T = [LX , LY ]T

If A and B are operators on the exterior algebra
∧∗

TM of degrees |A| and |B|, respectively,
we use the sign convention

[A, B] = AB − (−1)|A||B|BA (5)

Note that the Lie derivative LX has degree zero, iX has degree −1, and d has degree +1,
so for instance in Cartan’s formula we have [d, iX ] = dix + ixd.

It is also possible to define the Lie derivative using its properties, as was done for the
covariant derivative. Given a vector field X, then LX :

⊗p,q
TM →

⊗p,q
TM is the unique

operator with the following properties:

I) LXT is linear in the X-variable

II) LXT is linear in the T -variable

III) LXf = X(f)

IV) LX obeys the Leibnitz rule with respect to both tensor products and contractions

V) If Y is a vector field, then LXY = [X,Y ].

The Lie derivative is not a connection, since tensorality is not present in the first variable.

2 Lie Groups

A Lie group G is a topological group with a differentiable structure, and so that the group
operations are diffeomorphisms. Let a ∈ G and let La be left-multiplication by a and Ra
be right-multiplication by a. Also let I be the inverse mapping: I(a) = a−1. Then the
operators

Ra : G→ G, La : G→ G, I : G→ G (6)
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are required to be diffeomorphisms for all a ∈ G. If X is a vector field on G, then it is said
to be left-invariant if

(La)∗Xp = Xap (7)

for all a, p ∈ G. The similar definition for right-invariance is obvious. Thus if X is any
left-invariant field, it is determined by its value at a single point; one usually specifies a
left-invariant field simply by specifying its value at the identity element e ∈ G.

The operator Ada : G→ G acts on G by

Ada = La ◦Ra−1 . (8)

Of course this takes e to e, but it is not the identity on G unless a ∈ Z(G). The derivative
of Ada, also (unfortunately) denoted Ada, operates on vector fields by

Ada = (La)∗(Ra−1)∗. (9)

Note that Ada : TeM → TeM so Ad is a representation Ad : G → GL(TeG) of G into the
group of nonzero transformation of TeM . When restricted to left-invariant fields, Ada is
entirely determined by its action on TeG.

The exponential map Exp : TeM → G is defined as follows. If X ∈ TeG then X can be
regarded as a left-invariant field on G. If t ∈ R, then Exp(tX) is the point in G obtained
by following the integral curve of X to a distance of t.

If G is a matrix group, then TeG is canonically a vector space of matrices, and it can
be proven that Exp(tX) is the exponential series

Exp(tX) = I + tX +
1

2
t2X2 + . . . (10)

Additionally, if G is a matrix group and a(t) = Exp(tX), then a(t)−1 = a(−t) and

d

dt

∣∣∣
t=0

Ada(t)Y =

(
d

dt

∣∣∣
t=0

La(t)

)
Y +

(
d

dt

∣∣∣
t=0

Ra(t)−1

)
Y

=

(
d

dt

∣∣∣
t=0

a(t)

)
Y + Y

(
d

dt

∣∣∣
t=0

a(−t)
)

= XY − Y X.

(11)

We therefore define

adXY ,
d

dt
Ada(t)Y (12)

where a(t) = Exp(tX). We often write adXY = [X,Y ]. It is easily proven that [X,Y ] =
−[Y,X] and that the Jacobi identity holds, so TeM has the structure of a Lie algebra.

Example: The half-line.
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The group of positive real numbers forms a Lie group under multiplication, with 1
being the identity element. This Lie group is of course abelian. We have TeG ≈ R, and if
X ∈ R ≈ TeG then Exp(tX) = etX .

Example: S1

S1 has the structure of a Lie group when it is regarded as the set {eiθ ∈ C | θ ∈ R},
along with complex multiplication. The identity is again 1 = e0, and the tangent space at 1 is
naturally identified with the pure-imaginary numbers. The exponential map Exp : iR→ S1
is, again, simply Exp(iX) = eiX .

Example S3

The Lie group structure of S3 can be seen in several ways. In analogy with the case
of S1, which we defined to be the unit complex numbers, we can define S3 to be the unit
quaternions, namely the set { q ∈ H | |q|2 = 1 }, where H is the quaternion algebra. Since
quaternion-multiplication is norm-preserving, meaning

|q1q2|2 = |q1|2|q2|2 (13)

we see that quaternionic multiplication descends to S3, giving it a non-abelian Lie group
structure. The identity element e is 1 ∈ H, and the vector space Te S3 is naturally identified
with the vector space of purely imaginary quaternions.

If v ∈ Te S3, meaning v = a i + b j + c k, we have again that Exp(tv) = etv. If
v1,v2 ∈ Te S3 are any purely imaginary quaternions, then by taking derivatives it is easy to
see that the Lie algebra is simply

[v1,v2] = v1v2 − v2v1 (14)

where the product, for example v1v2, is just quaternionic multiplication. Computed in the
natural basis, this means

[i, j] = 2k, [j, k] = 2i, [k, i] = 2j, (15)

so that TeM is the Lie algebra so(3) (with the usual basis elements multiplied by 2). This
is of course the same as the Lie algebra su(2).

It is possible to see that S3 is the Lie group SU(2), not SO(3). Note that a homo-
morphism H → C(2) exists (C(2) is the group of complex 2 × 2 matrices), which sends
q = a+ bi+ cj + dk to the matrix

Mq =

[
a− di −c− bi
c− bi a+ di

]
. (16)

There are in fact many ways to choose this homomorphism, although up to conjugation by
group elements there are only two ways, which are related to each other by quaternionic
conjugation.
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Note that |q|2 = det(Mq). Since q ∈ S3 implies |q|2 = 1, we have proven that q 7→Mq

maps S3 to SL(2). Any matrix of the form Mq above is also unitary (see Exercise 7), so
that in fact S3 maps to SU(2). The kernel is easily seen to be trivial, and it can be proven
that this is surjective as well. Therefore S3 ≈ SU(2).

This is a Lie groups isomorphism, so the Lie algebras should be canonically isomorphic
as well. To check this, let γi, γj , and γk be paths in S3 that represent the vectors i, j, and
k at the point 1 ∈ S3. A natural choice is

γi(t) = cos(t) + i sin(t)

γj(t) = cos(t) + j sin(t)

γk(t) = cos(t) + k sin(t).

(17)

Under the mapping q 7→Mq, we obtain the three paths through Id

Γx(t) =

[
cos(t) −i sin(t)
−i sin(t) cos(t)

]
Γy(t) =

[
cos(t) − sin(t)
sin(t) cos(t)

]
Γz(t) =

[
cos(t) − i sin(t) 0

0 cos(t) + i sin(t)

] (18)

so that the tangent space is

TIdSU(2) =

{[
−zi −y − xi

y − xi zi

] ∣∣∣∣ x, y, x ∈ R
}
. (19)

This is su(2), the Lie algebra of trace-free anti-Hermitian matrices. A basis over R is −i
times the usual Pauli matrices σx, σy, and σz, where

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (20)

We have shown

TIdSU(2) ≈ spanR{−iσx, −iσy, −iσz} and

[−iσx, −iσy] = −2iσz [−iσy, −iσz] = −2iσx [−iσz, −iσx] = −2iσy
(21)

The Lie algebra structure given by (21) is of course identical to that given by (15).

The Pauli matrices first appeared in the study of electron spin, and continue to be of
vital importance in physics. The reason these spin matrices should appear in the study of

S3 may at first seem strange. However S3 is actually a spin group, Spin(3), the double cover
of SO(3).

3 Exercises

1) Let G be a group. Prove that the bracket operation on TeG defined by (12) and the
topological bracket of the corresponding left-invariant fields coincide.
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2) Let G be a Lie group. Prove that the topological bracket between any left-invariant
field and any right-invariant field on G is zero.

3) Prove that the differential of the adjoint action Ada on a Lie group takes left-invariant
vector fields to left-invariant vector fields, and right-invariant fields to right-invariant
fields.

4) Give an explicit proof of (14).

5) It was asserted that the homomorphism (16) could be chosen differently. What are
some different choices?

6) Prove that, under the mapping q 7→Mq, conjugation by the group element j (that is,
the map q 7→ jqj−1) corresponds to the matrix complex conjugation operation.

7) Prove that, under the mapping q 7→Mq, quaternionic conjugation corresponds to the
matrix conjugate-transpose operation. Use this to prove that S2 → U(2).

8) Prove that any 2×2 unitary matrix (defined to be a complex matrix U with UU
T

= Id)
has the form eiθ/2Mq for some unit quaternion q. Use this to prove that S3 ≈ SU(2).

9) Prove that the homomorphism (16) is unique up to quaternionic conjugation (the map
a+bi+cj+dk 7→ a−bi−cj−dk) and conjugation by group elements (that is, mappings
of the form q 7→ aqa−1 where a is another quaternion).

10) Prove that the 4-dimensional algebra of 2 × 2 anti-hermitian matrices constitute the
Lie algebra of U(2).
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