Lecture 3 - Lie Groups and Geometry

July 29, 2009

1 Integration of Vector Fields on Lie Groups

Let M be a complete manifold, with a vector field X. A time-dependent family of diffeomorphisms $\varphi_{t}: M \rightarrow M$ is called the flow of X if, for any function f and any time τ, we have

$$
\begin{equation*}
\left.\frac{d}{d t}\right|_{t=\tau} f\left(\varphi_{t}\left(\varphi_{\tau}^{-1}(p)\right)\right)=X_{p}(f) \tag{1}
\end{equation*}
$$

The path $t \mapsto \varphi_{t}(p)$ is called the flow line, or integral curve, of X through p.
Now let G be a Lie group, and assume X is a left-invariant vector field. The flow line of X through e is, by definition, the path $t \mapsto \operatorname{Exp}(t X)$. Moving this by left-translation to any point $a \in G$, the flow line through a is

$$
t \mapsto L_{a} \operatorname{Exp}(t X) .
$$

Thus the flow of X is therefore

$$
\begin{aligned}
\varphi_{t}(a) & =a \operatorname{Exp}(t X) \\
& =R_{\operatorname{Exp}(t X)} a .
\end{aligned}
$$

Thus $\varphi_{t}=R_{\operatorname{Exp}(t X)}$, so that left-invariant vector fields integrate out to smooth families of right translations. Similarly right-invariant fields integrate out to left translations.

2 Riemannian Geometry on Lie Groups

2.1 Left-invariant metrics

If g_{e} is an inner product on the tangent space at the identity, we can extend g_{e} to a metric g on G by left translation. That is, if $a \in G$ and X_{a}, Y_{a} are vectors at a, then

$$
\begin{equation*}
g\left(X_{a}, Y_{a}\right) \triangleq g\left(L_{a^{-1} *} X_{a}, L_{a^{-1} *} Y_{a}\right) . \tag{2}
\end{equation*}
$$

Note that a left-invariant metric g is constant when evaluated against left-invariant fields Y and Z. Thus

$$
\begin{equation*}
\left(L_{X} g\right)(Y, Z)=-g([X, Y], Z)-g(Y,[X, Z]) \tag{3}
\end{equation*}
$$

Note that $[X, W]=0$ whenever X is right-invariant and W is left-invariant; this is from an exercise from a previous lecture. When g is a left-invariant metric, then right-invariant fields are Killing.

2.2 Bi-invariant metrics

A metric is called bi-invariant if it is both left- and right-invariant. If X is a left-invariant field and g is a right-invariant metric, then $L_{X} g=0$. Therefore if g is bi-invariant and X, Y, Z are left-invariant, then

$$
\begin{equation*}
0=g([X, Y], Z)+g(Y,[X, Z]) \tag{4}
\end{equation*}
$$

Most Lie groups do not have bi-invariant metrics, although all compact Lie groups do. From (3) it is easy to see that semi-simple Lie groups have a bi-invariant metric, as the Killing form automatically satisfies (4) and is definite on semi-simple algebras.

2.3 Connection and curvature in a bi-invariant metric

If a Lie group has a bi-invariant metric, the Lie algebra entirely determines the Riemannian structure. If g is left-invariant and X_{1}, \ldots, X_{n} are left-invariant fields that form an orthonormal basis at e (and therefore at all points), the Koszul formula reduces to

$$
2\left\langle\nabla_{X_{i}} X_{j}, X_{k}\right\rangle=\left\langle\left[X_{i}, X_{j}\right], X_{k}\right\rangle-\left\langle\left[X_{j}, X_{k}\right], X_{i}\right\rangle+\left\langle\left[X_{k}, X_{i}\right], X_{j}\right\rangle
$$

If g is bi-invariant, by (4) the last 2 terms cancel and we get $2\left\langle\nabla_{X_{i}} X_{j}, X_{k}\right\rangle=\left\langle\left[X_{i}, X_{j}\right], X_{k}\right\rangle$, so that

$$
\begin{equation*}
\nabla_{X_{i}} X_{j}=\frac{1}{2}\left[X_{i}, X_{j}\right] \tag{5}
\end{equation*}
$$

Using the Jacobi identity and (4), we easily find

$$
\begin{align*}
\operatorname{Rm}(X, Y) Z & =-\frac{1}{4}[[X, Y], Z] \\
\langle\operatorname{Rm}(X, Y) Z, W\rangle & =\frac{1}{4}\langle[X, Y],[W, Z]\rangle \tag{6}\\
\sec (X, Y) & =\frac{1}{4} \frac{|[X, Y]|^{2}}{|X|^{2}|Y|^{2}}
\end{align*}
$$

Sectional curvatures are therefore all non-negative.

3 Examples

3.1 The 3 -sphere

Again the fundamental example is the 3 -sphere. We have seen that \mathbb{S}^{3} is a Lie group in two equivalent ways, as the group of unit quaternions, and as the matrix group $S U(2)$. We have seen that its Lie algebra has two equivalent formulations, as the Lie algebra of purely imaginary quaternions, and as the span of $-i$ times the Pauli matrices.

In the metric inherited from \mathbb{R}^{4}, the tangent vectors $\{i, j, k\} \in T_{1} \mathbb{S}^{3}$ are orthonormal. It is a simple matter to verify that the inherited metric is bi-invariant. Letting $\mathbf{v}_{i}, \mathbf{v}_{j}$, and \mathbf{v}_{k} be the left-invariant fields on \mathbb{S}^{3} with $\mathbf{v}_{i}(1)=i, \mathbf{v}_{j}(1)=j$ and $\mathbf{v}_{k}(1)=k$, then with the Lie algebra structure $\left[\mathbf{v}_{i}, \mathbf{v}_{j}\right]=2 \mathbf{v}_{k}$ and cyclic permutations, we compute the connections

$$
\begin{align*}
\nabla_{\mathbf{v}_{i}} \mathbf{v}_{i} & =\nabla_{\mathbf{v}_{j}} \mathbf{v}_{j}=\nabla_{\mathbf{v}_{k}} \mathbf{v}_{k}=0 \\
\nabla_{\mathbf{v}_{i}} \mathbf{v}_{j} & =\mathbf{v}_{k} \tag{7}\\
\nabla_{\mathbf{v}_{j}} \mathbf{v}_{k} & =\mathbf{v}_{i} \\
\nabla_{\mathbf{v}_{k}} \mathbf{v}_{i} & =\mathbf{v}_{j}
\end{align*}
$$

the curvatures

$$
\begin{align*}
& \operatorname{Rm}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right) \mathbf{v}_{k}=0 \\
& \operatorname{Rm}\left(\mathbf{v}_{i}, \mathbf{v}_{j}\right) \mathbf{v}_{j}=\mathbf{v}_{i} \tag{8}\\
& \text { etc., }
\end{align*}
$$

and the sectional curvatures

$$
\begin{equation*}
\sec \left(\mathbf{v}_{i}, \mathbf{v}_{j}\right)=1, \quad \sec \left(\mathbf{v}_{j}, \mathbf{v}_{k}\right)=1, \quad \sec \left(\mathbf{v}_{i}, \mathbf{v}_{k}\right)=1 \tag{9}
\end{equation*}
$$

As we already know to be the case, \mathbb{S}^{3} has constant curvature +1 .

3.2 The Hopf Fibration

Note that \mathbb{H} is isomorphic to $\mathbb{C} \oplus \mathbb{C}$, for instance by writing $q=a+b i+c j+d k$ as

$$
\begin{equation*}
q=(a+b i)+(c+d i) j \tag{10}
\end{equation*}
$$

Let X_{L}, Y_{L}, and Z_{L} be the vector fields obtained by left-translating the vectors $i, j, k \in T_{1} \mathbb{S}^{3}$. The corresponding integral curves through 1 are $t \mapsto e^{i t}, t \mapsto e^{j t}$, and $t \mapsto e^{k t}$. Lefttranslating to any $q \in \mathbb{S}^{3}$, the flow $\varphi_{t}: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3}$ of X_{L} is

$$
\begin{equation*}
\varphi_{t}=R_{e^{i t}} \tag{11}
\end{equation*}
$$

Through a point $q=a+b i+c j+d k$, this is

$$
\begin{equation*}
\varphi_{t}(q)=q e^{i t}=e^{i t}(a+b i)+e^{-i t}(c+d i) j \tag{12}
\end{equation*}
$$

Viewing this via stereographic projection from -1 , it is easy to see that this is a left-handed (clockwise) screw motion (assuming \mathbb{S}^{3} is oriented with the outward normal).

If i is extended instead to a right-invariant field X_{R}, then the flow is

$$
\begin{equation*}
q \mapsto e^{i t} q=e^{i t}(a+b i)+e^{i t}(c+d i) j \tag{13}
\end{equation*}
$$

which is a flow by left-translations, and a right-handed (counterclockwise) screw motion.

3.3 Nilpotent groups

The set of upper-triangular $n \times n$ matrices with 1's along the diagonal is a nilpotent group under matrix multiplication. From its importance in physics, the group of upper-triangular 3×3 matrices

$$
\mathcal{H}=\left\{\left.\left[\begin{array}{ccc}
1 & x & z \tag{14}\\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right] \right\rvert\, \quad x, y, z \in \mathbb{R}\right\}
$$

is given the name the Heisenberg group. Of course it it topologically just \mathbb{R}^{3}. Its Lie algebra consists of the strictly upper-triangular matrices

$$
\mathfrak{h}=\operatorname{span}_{\mathbb{R}}\left\{P=\left[\begin{array}{lll}
0 & 1 & 0 \tag{15}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], Q=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], h=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right\}
$$

where we see

$$
\begin{equation*}
[P, Q]=h, \quad[P, h]=0, \quad[Q, h]=0 \tag{16}
\end{equation*}
$$

With the left-invariant metric, the Koszul formula gives

$$
\begin{array}{lll}
\nabla_{P} P=0 & \nabla_{Q} P=-\frac{1}{2} h & \nabla_{h} P=-\frac{1}{2} Q \\
\nabla_{P} Q=\frac{1}{2} h & \nabla_{Q} Q=0 & \nabla_{h} Q=\frac{1}{2} P \tag{17}\\
\nabla_{P} h=-\frac{1}{2} Q & \nabla_{Q} h=\frac{1}{2} P & \nabla_{h} h=0
\end{array}
$$

and we compute

$$
\begin{array}{ll}
\operatorname{Rm}(P, Q) Q=-\frac{3}{4} P & \operatorname{Rm}(P, h) h=\frac{1}{4} P \\
\operatorname{Rm}(Q, h) h=\frac{1}{4} Q & \operatorname{Rm}(Q, P) P=-\frac{3}{4} Q \tag{18}\\
\operatorname{Rm}(h, P) P=\frac{1}{4} h & \operatorname{Rm}(h, Q) Q=\frac{1}{4} h
\end{array}
$$

with all other curvatures, such as $\operatorname{Rm}(P, Q) h$, being zero. Therefore

$$
\begin{equation*}
\sec (P, Q)=-\frac{3}{4}, \quad \sec (P, h)=\frac{1}{4}, \quad \sec (Q, h)=\frac{1}{4} \tag{19}
\end{equation*}
$$

so \mathcal{H} has both positive and negative sectional curvatures. We easily compute

$$
\operatorname{Ric}=\left[\begin{array}{ccc}
-\frac{1}{2} & 0 & 0 \tag{20}\\
0 & -\frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]
$$

so scalar curvature is negative: $R=-\frac{1}{2}$.

4 Exercises

1) Let G be a connected Lie group with a bi-invariant metric, and Lie algebra \mathfrak{g}. Prove that the representation $A d: G \rightarrow G L(\mathfrak{g})$ reduces to a representation $A d: G \rightarrow$ $S O\left(T_{e} \mathfrak{g}\right)$.
2) Identifying the Heisenberg group \mathcal{H} with \mathbb{R}^{3}, what are expressions (in (x, y, z)-coordinates) of the left- and right-invariant vector fields that extend P, Q, and h ?
3) Is the metric on \mathcal{H} that was given in the text a bi-invariant metric?
4) Let V be the infinite-dimensional vector space of polynomials in x. Let λ be a constant. Prove that sending P to the operator $\lambda \frac{d}{d x}, Q$ to the operator that multiplies by x, and h to the operator that multiplies by λ, is a representation of \mathcal{H} on V (in physics normally $\lambda=i \hbar)$.
5) The simplest non-trivial Lie algebra has two generators A and B with $[A, B]=B$. Obviously it is nilpotent. What is the corresponding Lie Group G ? Given the leftinvariant metric with $|A|=|B|=1$ and $\langle A, B\rangle=0$, what is the curvature? Prove that G has no bi-invariant metric.
