
Lecture 7 - F-structures II - Examples and Definitions

August 4, 2011

1 Definitions

We recall the definition of F-structures. An F-structure G consists of a sheaf (also
denoted G) of compact abelian Lie groups (Tori) over a Hausdorff topological space X, with
the following additional structure:

I. If U ⊂ X is an open set, then the group G(U) has a local action on U , denoted [G(U)].

II. The assignment of the groups G(U) to the local actions [G(U)] commutes with the
structure homomorphisms.

III. Given any x ∈ X, there is a saturated neighborhood V (x) ⊂ X of x, and some finite

normal cover π : Ṽ (x)→ V (x), that obey the following conditions:

– If G̃ is the lifted sheaf, then if x̃ ∈ π−1(x) and x̃ ∈ Ũ where Ũ ⊂ Ṽ (x) is an open

set, then the structure homomorphism G̃(Ṽ (x))→ G̃x̃ is an isomorphism.

– The local action of G̃(Ṽ (x)) is a complete local action. That is, it is induced by

a global action of the torus G̃(Ṽ (x)) ≈ G̃x̃ on Ṽ (x).

– The V (x) can be chosen so that if x, y ∈ X lie in the closure of the same orbit

O, then V (x) = V (y).

Because of III, we can regard the stalk Gx at a point x as device that encodes the symmetries
of a manifold in some region near a point, at least up to taking finite normal covers.

A g̃-structure is a sheaf G of Lie algebras (not necessarily abelian or compact) that

obeys I, II, and III, except that the covering maps π : Ṽ (x)→ V (x) need not be finite.

A few additional definitions will be required:

• A g̃-structure G is called pure if its underlying sheaf is locally constant.
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• If V (x) and Ṽ (x) can be chosen independently of x then G is called an elementary
g̃-structure. Necessarily V (x) = X.

• If G is a g̃-structure with sheaf g and g′ ⊂ g is a subsheaf, then (since the action of g

descends to g′) g′ defines a g̃-structure G′ called a substructure.

• A g̃-structure G is called effective if its local actions are effective. It can be proved that
if G is an effective g̃-structure on a Riemannian manifold, each stalk is a connected
Lie group, then the structure homomorphisms of G are injective.

We define the rank of a g̃-structure G at x to be dimOx, and we say G has positive
rank if dimOx > 0 for all x.

Def An atlas for an effective g̃-structure G is a collection {(Uα,Gα)} so that

i. the Uα are connected, saturated (w.r.t. G, not Gα), open sets that form a locally finite
covering of X

ii. each Gα ⊂ G |Uα is pure

iii. given any x, there is an α with Gα,x = Gx.

A subatlas A′ ⊂ A is an atlas {(U ′α,G′α)} so that U ′α ⊂ Uα and G′α = Gα |U ′
α

.

An F-structure is typically defined by specifying an atlas {(Uα,Gα)}, determining a
global action of Gα on some cover of Uα, and gluing the stalks of the Gα on the overlaps in
a way dictated by the actions.

A substructure P ⊆ G is called a polarization for G if P has an atlas so that the rank of

Pα is positive and constant on Uα (though the rank of P may vary with α). A polarization

P is called pure if P is a pure g̃-structure. A pure polarization gives the base space the
structure of a fibration.

Another way to understand polarizations is as follows. An orbit O of an F-structure
is called a singular orbit if the dimension of the orbit is different from the dimension of the
stalk of G at points of O (note that the dimension of the stalks on O is constant, due to
the third part of III). An F-structure is polarized if and only if no singular orbits exist. A
polarized F-structure may have stalks of non-constant dimension, however.

2 Basic Examples of F-structures

2.1 Group action of T k on Mn

Assume there is a group action of T k on Mn. If (g, x) ∈ T k ×Mn, denote the action by
(g, x) 7→ g.x.
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To define an F-structure, we define the sheaf G is the constant sheaf: if U ⊂Mn is any
open set besides the empty set then G(U) = T k, and all structure homomorphisms are the
identity. A partial action of G(U) on U is given as follows: we define the domain DU by

DU =
{

(g, u) ∈ T k ×Mn | g.u ∈ U
}
, (1)

and a partial action to be (g, x) 7→ g.x whenever x ∈ U and g.x ∈ U . Clearly {e}×U ⊂ DU .
The local action [G(U)] on U is the equivalence class of this partial action. Because the
restriction homomorphisms are each the identity, it is clear that the local actions commute
with the restriction homomorphisms.

Setting V (x) = T k for every x ∈ T k and Ṽ (x) = V (x), the F-structure axioms are
satisfied. Since the local covers are trivial, this is an elementary T-structure.

2.2 F-structures on quotients

Assume a manifold Mn admits an action by a torus T k, and let G be the associated F-
structure. Assume Γ is a discrete group of free actions of Mn, and set Nn = Mn/Γ.

An F-structure G′ exists on Nn, as follows. Cover Nn with a finite number of open
sets Uα that are “small,” specifically, that obeys the following two stipulations. If Ũα is
any lift of Uα to Mn then π : Ũα → Uα is a homeomorphism, and Uα ∩ Uβ , if non-empty,
is connected. Choose a basepoint x ∈ Nn, and select a lift x̃ ∈ Mn of x. Now for each α
choose a point xα ∈ Uα and a minimizing geodesic γα from x to xα. Lifting the geodesic
to a geodesic γ̃α that begins at x̃, we see that it terminates at a point x̃α ∈ π−1(xα). Note

that x̃α lies in some pre-image Ũα of Uα. Since π : Ũα → Uα is a homeomorphism, we can
define G′(Uα) = G(Ũα), and also define the local action of G′(Uα) on Uα as the local action

coming from G(Ũα) on Ũα.

The structure homomorphisms will be as follows. If Ũα ∩ Ũβ is not empty, then simply

define ρ′UβUα = ρŨβŨα . If Uα∩Uβ is not empty but Ũα∩ Ũβ is empty, then there is a unique

element g ∈ Γ so that gŨα ∩ Ũβ is not empty. Define ρ′UβUα to be ρŨβgŨα ◦ g. Here g ∈ Γ

acts on a section of G(Ũα) via the holonomy action: if p ∈ Mn and a ∈ G(Ũα) then g(a)
acts on g.p via g ◦ a ◦ g−1.

2.3 A pure F-structure of non-positive rank on a compact manifold

Consider the action of S1 on R3, given by

θ.

 x
y
z

 =

 x cos θ + y sin θ
y cos θ − x sin θ

z

 .
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This gives rise to an F-structure of non-positive rank on R3. Specifically, the rank is 1,
except for points of the form (0, 0, z), where the rank is zero. Restricting this action to S2,
this gives an F-structure on S2. The stalk at each point is isomorphic to S1, and this is a
constant sheaf (the total space is S1× S2). However the action has two singular points, at
(0, 0, 1)T , (0, 0,−1)T ∈ S2, so the F-structure does not have positive rank.

2.4 An F-structure that does not lift to a covering space

Consider the action of S1 on itself. As in the first example, this produces an F-structure
G. Consider the covering map π : R1 → S1. The sheaf pulls back, as do the local actions.
However, there is no complete local action of the pullback sheaf π∗ G on R (the definition
of a complete local action of a sheaf on its base space was given in the previous lecture).
Therefore the pullback sheaf with its pullback action is not an F-structure.

2.5 An effective F-structure with non-injective structure homo-
morphisms

If k is an integer, let f : S1 → S1 be the map f(x) = xk. This is the standard k-1 cover of
the circle on itself. Let X be the mapping torus for f . That is, X is the topological space

X = S1 × [0, 1] / ∼ (2)

where the equivalence is (p, 1) 7→ (f(p), 0). Of course X is not a manifold unless k = 1; for
example if k = 2, this space is obtained by a 1-1 gluing of the the boundary circle of the
Möbius strip to its center circle.

Define S ⊂ X to be the image of S1×{0} (or S1×{1}) in X. An F-structure G and its
action can best be described using pre-image sets: if U ⊂ X is open, let U ′ ⊂ S1×[0, 1] be
its pre-image. First assume U 6= ∅ but U does not intersect S. Then U is homeomorphic
to U ′, so we can define G(U) = S1 with its local action obtained from the action of S1 on

S1×[0, 1].

Next assume U ⊂ X intersects S, but does not intersect, say, the image of S1×[ 14 ,
3
4 ]

in X; again define G(U) = S1. Let p′ ∈ U ′ be any pre-image of p. If p′ ∈ U ′ ∩ S1[ 34 , 1] then
p′ 7→ eiθ.p′ If p′ ∈ U ′ ∩ S1[0, 14 ] then p′ 7→ ekiθ.p. If p ∈ S we can take p′ in either S1×[ 34 , 1]
or in S1×[0, 14 ], but the actions we defined commute with the identification map, so it does
not matter which set we assume p′ to be in.

If U is a saturated open set that intersects S but does not intersect the image of

S1×[ 14 ,
3
4 ], and V is the image of S1×(0, 1/4), say, then the structure homomorphism ρU∩V,U

is a k-1 covering map.
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2.6 A pure, non-polarized F-structure with a polarization

Consider S3 ⊂ C2. The Clifford torus, which is the set of points (eiθ1 , eiθ2) ∈ S3 ⊂ C2,
acts on S3 via multiplication. Let G be the F-structure obtained from this action. This
F-structure is pure but does not have constant rank, so is therefore non-polarized. To see
this explicitly by the definition, consider any atlas A = {(Uα,Gα)}. Let p ∈ S3 ∩{0} × C
be a point on one of the primary circles (that is, the intersection of S3 with either the z- or
w-axis). Since A is an atlas, there is some Uα with p ∈ Uα and so that Gp = Gα,p = T 2,
forcing Gα = G |Uα . The rank of Gα is therefore not constant on Uα, as the orbit through p
is 1-dimensional while orbits through neighboring points will be 2-dimensional.

However we can construct a polarized substructure. Let S1 = S3 ∩C×{0} and S2 =

S3 ∩{0} × C. Recalling that G(U) = T 2 (unless U = ∅), we define G′ ⊂ G be as follows:

G′(U) =



{1} if U = ∅
{(eiθ, 1)} ⊂ G(U) if U intersects S1 but not S2

{(1, eiθ)} ⊂ G(U) if U intersects S2 but not S1

G(U) if U intersects neither S2 nor S1

{1} ⊂ G(U) if U intersects both S2 and S1

(3)

The restriction homomorphisms for G′ are simply induced by the restriction maps for G. If
p ∈ S3, the stalks are

G′p =


S1 = {(eiθ, 1)} if p ∈ S1

S1 = {(1, eiθ)} if p ∈ S2

T 2 if p ∈ S3 \{S1 ∪ S2}.
(4)

For an atlas, let U1 be a saturated neighborhood of S1 and U2 a saturated neighborhood of
S2, with the condition that U1 ∩ U2 = ∅, and let U3 = S3 \(S1 ∪ S2). Let G′1 ⊂ G′ |U1 be
the substructure given by G′1(U) = {(eiθ, 1)} for any nonempty U ⊂ U1, and similarly for
G′2. Finally define G′3 = G′ |U3

.

To see that A′ = {(G′1, U1), (G′2, U2), (G′3, U3)} is an atlas for G, note that {U1, U2, U3}
form a saturated open cover of S3, that each G′i is a pure structure, and that if p ∈ S3 then
G′p = G′1,p if p ∈ S1, G′p = G′2,p if p ∈ S2, and G′p = G′3,p if p /∈ S1 ∪ S2. To see that G′ ⊂ G is
a polarization, simply note that each structure G′i has constant rank.

3 Theorems

Proposition 3.1 (regular atlases) If the F-structure G on the manifold X (possibly open)
has an atlas {(Uα,Gα)}, then G has an atlas {(Uα,Gα)} with the following properties:

(1) The sets Uα have compact closure
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(2) If x ∈ Uα1
∩ · · · ∩ Uαk , then (for some ordering) Gα1,x ⊆ · · · ⊆ Gαk,x

(3) Given any x ∈ Uα, there is at most one Uβ with Gα,x = Gβ,x. If the manifold is
compact or if (1) is dropped, we can assume strict inclusion in (2).

Pf
(1) is clear.

(2) We argue inductively. Assume x ∈ Uβ ∩Uγ but Gβ,x * Gγ,x and Gγ,x * Gβ,x. Since
Gy 6= Gβ,y 6= Gγ,y for any y ∈ Uβ ∩ Uγ , so that Uβ ∩ Uγ is covered by other domains in the

atlas. Thus we can replace Uβ by Uβ − Uγ and Uγ by Uγ − Uβ , and still retain X =
⋃
Uα.

(3) First assume (1) an be dropped or that the manifold is compact. Let U1, . . . , Uk
be a maximal subcollection so that

⋃
Ui is connected and whenever x ∈ Ui ∩ Uj , then

Gi,x = Gj,x. Set U1 = U1 and let U2, . . . , U l be the connected components of
⋃
i Ui where

the union is over the Ui the have nonzero intersection with U1. Now consider the Ui that
do not intersect U1, and repeat this process.

Doing this for all such subcollections, the result follows. �

Proposition 3.2 (invariant metrics) Assume X is a manifold, and let A = {(Uα,Gα)}
be a regular atlas for the F-structure G. Then X has a G-invariant metric.

Pf
Let A′ ⊂ A. With a partial ordering of the Uα coming from (2) of Proposition 3.1, we

can choose Uα to be maximal. Cover U ′α by sets V (x1), . . . , V (xk) with V (xi) ⊂ Uα. Put
some metric on V (x1), lift it to Ṽ (x1), and average it over the action of G and over the deck
action. Project back to V (x1). Put a metric on V (x2) that agrees with the invariant metric
on V (x1) on the overlap, and perform the same averaging. Eventually this gives an invariant
metric on U ′α. This same procedure can be done on any U ′β , only the starting metrics on
the V (xi) must now agree with the metric on Uα where the intersection is nonempty. �

Proposition 3.3 If X is a compact manifold that carries an F-structure of positive rank,
then χ(X) = 0.

Pf
On each Ṽ (x) a torus acts with no common fixed points, so almost all of its elements

have a fixed-point free action. Given such an element with no fixed points, one finds a one-
parameter subgroup that acts on Ṽ (x), and so χ(Ṽ (x)) = 0, so χ(V (x)) = 0. Essentially
the same argument shows that χ(V (x) ∩ V (y)) = 0. Recalling that χ(U ∪ V ) = χ(U) +
χ(V )− χ(U ∩ V ) and covering X with finitely many V (x), we get the result. �
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4 Exercises

1) Canonical action of a sheaf on its total space. Let g be a locally constant sheaf of
topological groups over a manifold X, with projection π. Let g∗ = π∗(g) denote the
pullback sheaf. Show that there is a canonical action of g∗ on the total space of the
sheaf g. This action is pure, the orbits are just the fibers, and (π−1(X), g∗) is a pure
polarized F-structure.

2) Nilgeometry and Solvegeometry. Let A be a matrix A ∈ SL(2,Z), so A can be
considered a map A : T 2 → T 2. Let M3 be its mapping torus. If A is nilpotent, M3 is
a nilmanifold. Show that it supports a pure F-structure of rank 1, but no F-structure
of rank 2. If A has distinct real eigenvalues, it is a solvemanifold. In this case show
that there is a pure F-structure of rank 2, with exactly two substructures of rank 1,
each corresponding to an eigenvalue of A.
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