Lecture 7 - F-structures II - Examples and Definitions

August 4, 2011

1 Definitions

We recall the definition of F-structures. An F-structure \mathcal{G} consists of a sheaf (also denoted \mathcal{G}) of compact abelian Lie groups (Tori) over a Hausdorff topological space X, with the following additional structure:

- I. If $U \subset X$ is an open set, then the group $\mathcal{G}(U)$ has a local action on U, denoted $[\mathcal{G}(U)]$.
- II. The assignment of the groups $\mathcal{G}(U)$ to the local actions $[\mathcal{G}(U)]$ commutes with the structure homomorphisms.
- III. Given any $x \in X$, there is a saturated neighborhood $V(x) \subset X$ of x, and some finite normal cover $\pi : \widetilde{V}(x) \to V(x)$, that obey the following conditions:
 - If $\widetilde{\mathcal{G}}$ is the lifted sheaf, then if $\tilde{x} \in \pi^{-1}(x)$ and $\tilde{x} \in \widetilde{U}$ where $\widetilde{U} \subset \widetilde{V}(x)$ is an open set, then the structure homomorphism $\widetilde{\mathcal{G}}(\widetilde{V}(x)) \to \widetilde{\mathcal{G}}_{\tilde{x}}$ is an isomorphism.
 - The local action of $\widetilde{\mathcal{G}}(\widetilde{V}(x))$ is a *complete local action*. That is, it is induced by a global action of the torus $\widetilde{\mathcal{G}}(\widetilde{V}(x)) \approx \widetilde{\mathcal{G}}_{\tilde{x}}$ on $\widetilde{V}(x)$.
 - The V(x) can be chosen so that if $x, y \in X$ lie in the closure of the same orbit $\overline{\mathcal{O}}$, then V(x) = V(y).

Because of III, we can regard the stalk \mathcal{G}_x at a point x as device that encodes the symmetries of a manifold in some region near a point, at least up to taking finite normal covers.

A $\tilde{\mathfrak{g}}$ -structure is a sheaf \mathcal{G} of Lie algebras (not necessarily abelian or compact) that obeys I, II, and III, except that the covering maps $\pi: \widetilde{V}(x) \to V(x)$ need not be finite.

A few additional definitions will be required:

• A $\tilde{\mathfrak{g}}$ -structure \mathcal{G} is called *pure* if its underlying sheaf is locally constant.

- If V(x) and $\widetilde{V}(x)$ can be chosen independently of x then \mathcal{G} is called an elementary $\widetilde{\mathfrak{g}}$ -structure. Necessarily V(x)=X.
- If \mathcal{G} is a $\tilde{\mathfrak{g}}$ -structure with sheaf \mathfrak{g} and $\mathfrak{g}' \subset \mathfrak{g}$ is a subsheaf, then (since the action of \mathfrak{g} descends to \mathfrak{g}') \mathfrak{g}' defines a $\tilde{\mathfrak{g}}$ -structure \mathcal{G}' called a *substructure*.
- A $\tilde{\mathfrak{g}}$ -structure \mathcal{G} is called *effective* if its local actions are effective. It can be proved that if \mathcal{G} is an effective $\tilde{\mathfrak{g}}$ -structure on a Riemannian manifold, each stalk is a connected Lie group, then the structure homomorphisms of \mathcal{G} are injective.

We define the rank of a $\tilde{\mathfrak{g}}$ -structure \mathcal{G} at x to be dim \mathcal{O}_x , and we say \mathcal{G} has positive rank if dim $\mathcal{O}_x > 0$ for all x.

<u>Def</u> An atlas for an effective $\tilde{\mathfrak{g}}$ -structure \mathcal{G} is a collection $\{(U_{\alpha},\mathcal{G}_{\alpha})\}$ so that

- i. the U_{α} are connected, saturated (w.r.t. \mathcal{G} , not \mathcal{G}_{α}), open sets that form a locally finite covering of X
- *ii.* each $\mathcal{G}_{\alpha} \subset \mathcal{G}|_{U_{\alpha}}$ is pure
- iii. given any x, there is an α with $\mathcal{G}_{\alpha,x} = \mathcal{G}_x$.

A subatlas $\mathcal{A}' \subset \mathcal{A}$ is an atlas $\{(U'_{\alpha}, \mathcal{G}'_{\alpha})\}$ so that $U'_{\alpha} \subset U_{\alpha}$ and $\mathcal{G}'_{\alpha} = \mathcal{G}_{\alpha}|_{U'_{\alpha}}$.

An F-structure is typically defined by specifying an atlas $\{(U_{\alpha}, \mathcal{G}_{\alpha})\}$, determining a global action of \mathcal{G}_{α} on some cover of U_{α} , and gluing the stalks of the \mathcal{G}_{α} on the overlaps in a way dictated by the actions.

A substructure $\mathcal{P} \subseteq \mathcal{G}$ is called a *polarization* for \mathcal{G} if \mathcal{P} has an atlas so that the rank of \mathcal{P}_{α} is positive and constant on U_{α} (though the rank of \mathcal{P} may vary with α). A polarization \mathcal{P} is called *pure* if \mathcal{P} is a pure \tilde{g} -structure. A pure polarization gives the base space the structure of a fibration.

Another way to understand polarizations is as follows. An orbit \mathcal{O} of an F-structure is called a *singular orbit* if the dimension of the orbit is different from the dimension of the stalk of \mathcal{G} at points of \mathcal{O} (note that the dimension of the stalks on \mathcal{O} is constant, due to the third part of III). An F-structure is polarized if and only if no singular orbits exist. A polarized F-structure may have stalks of non-constant dimension, however.

2 Basic Examples of F-structures

2.1 Group action of T^k on M^n

Assume there is a group action of T^k on M^n . If $(g,x) \in T^k \times M^n$, denote the action by $(g,x) \mapsto g.x$.

To define an F-structure, we define the sheaf \mathcal{G} is the constant sheaf: if $U \subset M^n$ is any open set besides the empty set then $\mathcal{G}(U) = T^k$, and all structure homomorphisms are the identity. A partial action of $\mathcal{G}(U)$ on U is given as follows: we define the domain \mathcal{D}_U by

$$\mathcal{D}_U = \left\{ (g, u) \in T^k \times M^n \mid g.u \in U \right\}, \tag{1}$$

and a partial action to be $(g, x) \mapsto g.x$ whenever $x \in U$ and $g.x \in U$. Clearly $\{e\} \times U \subset \mathcal{D}_U$. The local action $[\mathcal{G}(U)]$ on U is the equivalence class of this partial action. Because the restriction homomorphisms are each the identity, it is clear that the local actions commute with the restriction homomorphisms.

Setting $V(x) = T^k$ for every $x \in T^k$ and $\widetilde{V}(x) = V(x)$, the F-structure axioms are satisfied. Since the local covers are trivial, this is an elementary T-structure.

2.2 F-structures on quotients

Assume a manifold M^n admits an action by a torus T^k , and let \mathcal{G} be the associated F-structure. Assume Γ is a discrete group of free actions of M^n , and set $N^n = M^n/\Gamma$.

An F-structure \mathcal{G}' exists on N^n , as follows. Cover N^n with a finite number of open sets U_{α} that are "small," specifically, that obeys the following two stipulations. If \widetilde{U}_{α} is any lift of U_{α} to M^n then $\pi:\widetilde{U}_{\alpha}\to U_{\alpha}$ is a homeomorphism, and $U_{\alpha}\cap U_{\beta}$, if non-empty, is connected. Choose a basepoint $x\in N^n$, and select a lift $\tilde{x}\in M^n$ of x. Now for each α choose a point $x_{\alpha}\in U_{\alpha}$ and a minimizing geodesic γ_{α} from x to x_{α} . Lifting the geodesic to a geodesic $\widetilde{\gamma}_{\alpha}$ that begins at \tilde{x} , we see that it terminates at a point $\widetilde{x}_{\alpha}\in \pi^{-1}(x_{\alpha})$. Note that \widetilde{x}_{α} lies in some pre-image \widetilde{U}_{α} of U_{α} . Since $\pi:\widetilde{U}_{\alpha}\to U_{\alpha}$ is a homeomorphism, we can define $\mathcal{G}'(U_{\alpha})=\mathcal{G}(\widetilde{U}_{\alpha})$, and also define the local action of $\mathcal{G}'(U_{\alpha})$ on U_{α} as the local action coming from $\mathcal{G}(\widetilde{U}_{\alpha})$ on \widetilde{U}_{α} .

The structure homomorphisms will be as follows. If $\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}$ is not empty, then simply define $\rho'_{U_{\beta}U_{\alpha}} = \rho_{\widetilde{U}_{\beta}\widetilde{U}_{\alpha}}$. If $U_{\alpha} \cap U_{\beta}$ is not empty but $\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}$ is empty, then there is a unique element $g \in \Gamma$ so that $g\widetilde{U}_{\alpha} \cap \widetilde{U}_{\beta}$ is not empty. Define $\rho'_{U_{\beta}U_{\alpha}}$ to be $\rho_{\widetilde{U}_{\beta}g\widetilde{U}_{\alpha}} \circ g$. Here $g \in \Gamma$ acts on a section of $\mathcal{G}(\widetilde{U}_{\alpha})$ via the holonomy action: if $p \in M^n$ and $a \in \mathcal{G}(\widetilde{U}_{\alpha})$ then g(a) acts on g.p via $g \circ a \circ g^{-1}$.

2.3 A pure F-structure of non-positive rank on a compact manifold

Consider the action of \mathbb{S}^1 on \mathbb{R}^3 , given by

$$\theta. \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x\cos\theta + y\sin\theta \\ y\cos\theta - x\sin\theta \\ z \end{pmatrix}.$$

This gives rise to an F-structure of non-positive rank on \mathbb{R}^3 . Specifically, the rank is 1, except for points of the form (0,0,z), where the rank is zero. Restricting this action to \mathbb{S}^2 , this gives an F-structure on \mathbb{S}^2 . The stalk at each point is isomorphic to \mathbb{S}^1 , and this is a constant sheaf (the total space is $\mathbb{S}^1 \times \mathbb{S}^2$). However the action has two singular points, at $(0,0,1)^T$, $(0,0,-1)^T \in \mathbb{S}^2$, so the F-structure does not have positive rank.

2.4 An F-structure that does not lift to a covering space

Consider the action of \mathbb{S}^1 on itself. As in the first example, this produces an F-structure \mathcal{G} . Consider the covering map $\pi: \mathbb{R}^1 \to \mathbb{S}^1$. The sheaf pulls back, as do the local actions. However, there is no *complete local action* of the pullback sheaf $\pi^*\mathcal{G}$ on \mathbb{R} (the definition of a complete local action of a sheaf on its base space was given in the previous lecture). Therefore the pullback sheaf with its pullback action is not an F-structure.

2.5 An effective F-structure with non-injective structure homomorphisms

If k is an integer, let $f: \mathbb{S}^1 \to \mathbb{S}^1$ be the map $f(x) = x^k$. This is the standard k-1 cover of the circle on itself. Let X be the mapping torus for f. That is, X is the topological space

$$X = \mathbb{S}^1 \times [0, 1] / \sim \tag{2}$$

where the equivalence is $(p,1) \mapsto (f(p),0)$. Of course X is not a manifold unless k=1; for example if k=2, this space is obtained by a 1-1 gluing of the boundary circle of the Möbius strip to its center circle.

Define $S \subset X$ to be the image of $\mathbb{S}^1 \times \{0\}$ (or $\mathbb{S}^1 \times \{1\}$) in X. An F-structure \mathcal{G} and its action can best be described using pre-image sets: if $U \subset X$ is open, let $U' \subset \mathbb{S}^1 \times [0,1]$ be its pre-image. First assume $U \neq \emptyset$ but U does not intersect S. Then U is homeomorphic to U', so we can define $\mathcal{G}(U) = \mathbb{S}^1$ with its local action obtained from the action of \mathbb{S}^1 on $\mathbb{S}^1 \times [0,1]$.

Next assume $U \subset X$ intersects S, but does not intersect, say, the image of $\mathbb{S}^1 \times [\frac{1}{4}, \frac{3}{4}]$ in X; again define $\mathcal{G}(U) = \mathbb{S}^1$. Let $p' \in U'$ be any pre-image of p. If $p' \in U' \cap \mathbb{S}^1[\frac{3}{4}, 1]$ then $p' \mapsto e^{i\theta}.p'$ If $p' \in U' \cap \mathbb{S}^1[0, \frac{1}{4}]$ then $p' \mapsto e^{ki\theta}.p$. If $p \in S$ we can take p' in either $\mathbb{S}^1 \times [\frac{3}{4}, 1]$ or in $\mathbb{S}^1 \times [0, \frac{1}{4}]$, but the actions we defined commute with the identification map, so it does not matter which set we assume p' to be in.

If U is a saturated open set that intersects S but does not intersect the image of $\mathbb{S}^1 \times [\frac{1}{4}, \frac{3}{4}]$, and V is the image of $\mathbb{S}^1 \times (0, 1/4)$, say, then the structure homomorphism $\rho_{U \cap V, U}$ is a k-1 covering map.

2.6 A pure, non-polarized F-structure with a polarization

Consider $\mathbb{S}^3 \subset \mathbb{C}^2$. The Clifford torus, which is the set of points $(e^{i\theta_1}, e^{i\theta_2}) \in \mathbb{S}^3 \subset \mathbb{C}^2$, acts on S^3 via multiplication. Let \mathcal{G} be the F-structure obtained from this action. This F-structure is pure but does not have constant rank, so is therefore non-polarized. To see this explicitly by the definition, consider any atlas $\mathcal{A} = \{(U_\alpha, \mathcal{G}_\alpha)\}$. Let $p \in \mathbb{S}^3 \cap \{0\} \times \mathbb{C}$ be a point on one of the primary circles (that is, the intersection of \mathbb{S}^3 with either the z- or w-axis). Since \mathcal{A} is an atlas, there is some U_α with $p \in U_\alpha$ and so that $\mathcal{G}_p = \mathcal{G}_{\alpha,p} = T^2$, forcing $\mathcal{G}_\alpha = \mathcal{G}|_{U_\alpha}$. The rank of \mathcal{G}_α is therefore not constant on U_α , as the orbit through p is 1-dimensional while orbits through neighboring points will be 2-dimensional.

However we can construct a polarized substructure. Let $S_1 = \mathbb{S}^3 \cap \mathbb{C} \times \{0\}$ and $S^2 = \mathbb{S}^3 \cap \{0\} \times \mathbb{C}$. Recalling that $\mathcal{G}(U) = T^2$ (unless $U = \emptyset$), we define $\mathcal{G}' \subset \mathcal{G}$ be as follows:

$$\mathcal{G}'(U) = \begin{cases} \{1\} & \text{if } U = \varnothing \\ \{(e^{i\theta}, 1)\} \subset \mathcal{G}(U) & \text{if } U \text{ intersects } S_1 \text{ but not } S_2 \\ \{(1, e^{i\theta})\} \subset \mathcal{G}(U) & \text{if } U \text{ intersects } S_2 \text{ but not } S_1 \\ \mathcal{G}(U) & \text{if } U \text{ intersects neither } S_2 \text{ nor } S_1 \\ \{1\} \subset \mathcal{G}(U) & \text{if } U \text{ intersects both } S_2 \text{ and } S_1 \end{cases}$$
(3)

The restriction homomorphisms for \mathcal{G}' are simply induced by the restriction maps for \mathcal{G} . If $p \in \mathbb{S}^3$, the stalks are

$$\mathcal{G}'_{p} = \begin{cases} \mathbb{S}^{1} = \{(e^{i\theta}, 1)\} & \text{if } p \in S_{1} \\ \mathbb{S}^{1} = \{(1, e^{i\theta})\} & \text{if } p \in S_{2} \\ T^{2} & \text{if } p \in \mathbb{S}^{3} \setminus \{S_{1} \cup S_{2}\}. \end{cases}$$

$$(4)$$

For an atlas, let U_1 be a saturated neighborhood of S_1 and U_2 a saturated neighborhood of S_2 , with the condition that $U_1 \cap U_2 = \emptyset$, and let $U_3 = \mathbb{S}^3 \setminus (S_1 \cup S_2)$. Let $\mathcal{G}'_1 \subset \mathcal{G}' \mid_{U_1}$ be the substructure given by $\mathcal{G}'_1(U) = \{(e^{i\theta}, 1)\}$ for any nonempty $U \subset U_1$, and similarly for \mathcal{G}'_2 . Finally define $\mathcal{G}'_3 = \mathcal{G}' \mid_{U_3}$.

To see that $\mathcal{A}' = \{(\mathcal{G}'_1, U_1), (\mathcal{G}'_2, U_2), (\mathcal{G}'_3, U_3)\}$ is an atlas for \mathcal{G} , note that $\{U_1, U_2, U_3\}$ form a saturated open cover of \mathbb{S}^3 , that each \mathcal{G}'_i is a pure structure, and that if $p \in \mathbb{S}^3$ then $\mathcal{G}'_p = \mathcal{G}'_{1,p}$ if $p \in S_1$, $\mathcal{G}'_p = \mathcal{G}'_{2,p}$ if $p \in S_2$, and $\mathcal{G}'_p = \mathcal{G}'_{3,p}$ if $p \notin S_1 \cup S_2$. To see that $\mathcal{G}' \subset \mathcal{G}$ is a polarization, simply note that each structure \mathcal{G}'_i has constant rank.

3 Theorems

Proposition 3.1 (regular atlases) If the F-structure \mathcal{G} on the manifold X (possibly open) has an atlas $\{(U_{\alpha}, \mathcal{G}_{\alpha})\}$, then \mathcal{G} has an atlas $\{(\underline{U}_{\alpha}, \mathcal{G}_{\alpha})\}$ with the following properties:

(1) The sets \underline{U}_{α} have compact closure

- (2) If $x \in \underline{U}_{\alpha_1} \cap \cdots \cap \underline{U}_{\alpha_k}$, then (for some ordering) $\mathcal{G}_{\alpha_1,x} \subseteq \cdots \subseteq \mathcal{G}_{\alpha_k,x}$
- (3) Given any $x \in \underline{U}_{\alpha}$, there is at most one \underline{U}_{β} with $\mathcal{G}_{\alpha,x} = \mathcal{G}_{\beta,x}$. If the manifold is compact or if (1) is dropped, we can assume strict inclusion in (2).

<u>Pf</u>

- (1) is clear.
- (2) We argue inductively. Assume $x \in U_{\beta} \cap U_{\gamma}$ but $\mathcal{G}_{\beta,x} \nsubseteq \mathcal{G}_{\gamma,x}$ and $\mathcal{G}_{\gamma,x} \nsubseteq \mathcal{G}_{\beta,x}$. Since $\mathcal{G}_y \neq \mathcal{G}_{\beta,y} \neq \mathcal{G}_{\gamma,y}$ for any $y \in U_{\beta} \cap U_{\gamma}$, so that $U_{\beta} \cap U_{\gamma}$ is covered by other domains in the atlas. Thus we can replace U_{β} by $U_{\beta} \overline{U_{\gamma}}$ and U_{γ} by $U_{\gamma} \overline{U_{\beta}}$, and still retain $X = \bigcup U_{\alpha}$.
- (3) First assume (1) an be dropped or that the manifold is compact. Let U_1, \ldots, U_k be a maximal subcollection so that $\bigcup U_i$ is connected and whenever $x \in U_i \cap U_j$, then $\mathcal{G}_{i,x} = \mathcal{G}_{j,x}$. Set $\underline{U}_1 = U_1$ and let $\underline{U}_2, \ldots, \underline{U}_l$ be the connected components of $\bigcup_i U_i$ where the union is over the U_i the have nonzero intersection with U_1 . Now consider the U_i that do not intersect U_1 , and repeat this process.

Doing this for all such subcollections, the result follows.

Proposition 3.2 (invariant metrics) Assume X is a manifold, and let $\mathcal{A} = \{(U_{\alpha}, \mathcal{G}_{\alpha})\}$ be a regular atlas for the F-structure \mathcal{G} . Then X has a \mathcal{G} -invariant metric.

Pf

Let $\mathcal{A}' \subset \mathcal{A}$. With a partial ordering of the U_{α} coming from (2) of Proposition 3.1, we can choose U_{α} to be maximal. Cover U'_{α} by sets $V(x_1), \ldots, V(x_k)$ with $\overline{V(x_i)} \subset U_{\alpha}$. Put some metric on $V(x_1)$, lift it to $\tilde{V}(x_1)$, and average it over the action of \mathcal{G} and over the deck action. Project back to $V(x_1)$. Put a metric on $V(x_2)$ that agrees with the invariant metric on $V(x_1)$ on the overlap, and perform the same averaging. Eventually this gives an invariant metric on U'_{α} . This same procedure can be done on any U'_{β} , only the starting metrics on the $V(x_i)$ must now agree with the metric on U_{α} where the intersection is nonempty. \square

Proposition 3.3 If X is a compact manifold that carries an F-structure of positive rank, then $\chi(X) = 0$.

<u>Pf</u>

On each $\tilde{V}(x)$ a torus acts with no common fixed points, so almost all of its elements have a fixed-point free action. Given such an element with no fixed points, one finds a one-parameter subgroup that acts on $\tilde{V}(x)$, and so $\chi(\tilde{V}(x)) = 0$, so $\chi(V(x)) = 0$. Essentially the same argument shows that $\chi(V(x) \cap V(y)) = 0$. Recalling that $\chi(U \cup V) = \chi(U) + \chi(V) - \chi(U \cap V)$ and covering X with finitely many V(x), we get the result.

4 Exercises

- 1) Canonical action of a sheaf on its total space. Let \mathfrak{g} be a locally constant sheaf of topological groups over a manifold X, with projection π . Let $\mathfrak{g}^* = \pi^*(\mathfrak{g})$ denote the pullback sheaf. Show that there is a canonical action of \mathfrak{g}^* on the total space of the sheaf \mathfrak{g} . This action is pure, the orbits are just the fibers, and $(\pi^{-1}(X), \mathfrak{g}^*)$ is a pure polarized F-structure.
- 2) Nilgeometry and Solvegeometry. Let A be a matrix $A \in SL(2,\mathbb{Z})$, so A can be considered a map $A: T^2 \to T^2$. Let M^3 be its mapping torus. If A is nilpotent, M^3 is a nilmanifold. Show that it supports a pure F-structure of rank 1, but no F-structure of rank 2. If A has distinct real eigenvalues, it is a solvemanifold. In this case show that there is a pure F-structure of rank 2, with exactly two substructures of rank 1, each corresponding to an eigenvalue of A.