Lecture 8 - Flat Manifolds and Invariant F-structures

August 4, 2011

1 An F-structure with no Polarized Substructures

1.1 The spaces \mathcal{E}_{θ}

Let $\mathcal{E} = \mathbb{R} \times \mathbb{C}$ and define $\mathcal{E}_{\theta} = \mathcal{E} / \Gamma$, where Γ is the infinite cyclic group on one generator γ which sends $(x, v) \mapsto (x + 2\pi, ve^{i\theta})$. Note that \mathcal{E}_{θ} is diffeomorphic to $\mathbb{S}^1 \times \mathbb{C}$, although it has a different geometric structure. Geometrically, we have $\mathcal{E}_0 = \mathcal{E}_{2\pi}$.

Define an action of $\mathbb{R} \times \mathbb{S}^1$ on \mathcal{E} as follows. If $(t, e^{is}) \in \mathbb{R} \times \mathbb{S}^1$ then define

$$(t, e^{is}).(x, v) = (x + t, ve^{i(s+t\frac{\theta}{2\pi})}).$$
 (1)

Defining $\gamma: \mathbb{R} \times \mathbb{S}^1 \to \mathbb{R} \times \mathbb{S}^1$ by $\gamma(t, e^{is}) = (t + 2\pi, e^{is})$, then note that if $n, k \in \mathbb{Z}$ we have

$$(\gamma^{n}.(t, e^{is})) \cdot (\gamma^{k}.(x, v)) = (t + 2\pi n, e^{is}) \cdot (x + 2\pi k, v e^{ik\theta})$$

$$= (x + t + 2\pi (n + k), v e^{i(s + t \frac{\theta}{2\pi} + (n + k)\theta)})$$

$$= \gamma^{n+k} \cdot (x + t, v e^{is + t \frac{\theta}{2\pi}})$$

$$= \gamma^{n+k} \cdot ((t, e^{is}) \cdot (x, v))$$
(2)

Therefore the action of $\mathbb{R} \times \mathbb{S}^1$ on \mathcal{E} passes to both quotients, becoming an action of T^2 on \mathcal{E}_{θ} . This gives a pure T-structure of nonconstant rank.

1.2 An F-structure with no polarization

Now consider the space X diffeomorphic to $[0,1] \times \mathbb{S}^1 \times \mathbb{C}$, but give each $\{\theta\} \times \mathbb{S}^1 \times \mathbb{C}$ the metric structure of \mathcal{E}_{θ} , and assign it the torus action given above for \mathcal{E}_{θ} . Since \mathcal{E}_{0} is isometric to \mathcal{E}_{1} , we can identify $\{0\} \times \mathbb{S}^{1} \times \mathbb{R}^{2}$ and $\{1\} \times \mathbb{S}^{1} \times \mathbb{R}^{2}$. We will call the resulting space M^{4} .

If $f: \mathcal{E}_{2\pi} \to \mathcal{E}_0$ is the canonical identification, the torus action on $\mathcal{E}_{2\pi}$ pushes forward to \mathcal{E}_0 via

$$f_*(t, e^{is}).(x, v) = (x + t, e^{i(s+t)}) = (t, e^{i(s+t)}).(x, v)$$
 (3)

This produces the torus map $(t, e^{is}) \mapsto (t, e^{i(s+t)})$, which in terms of the parameters $\{t, s\}$ is given by the map

$$\begin{pmatrix} t \\ s \end{pmatrix} \mapsto \begin{pmatrix} t \\ t+s \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} t \\ s \end{pmatrix} \tag{4}$$

The space X is diffeomorphic to the 4-manifold $T^2 \times \mathbb{C}$. However, if one travels along the latitude of the base T^2 , the stalks of the F-structure (which are also 2-tori) have holonomy given by the matrix

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \in SL(2, \mathbb{Z}), \tag{5}$$

where A is regarded as an automorphism of the torus. Let \mathcal{G} denote the T-structure obtained on M^4 obtained by gluing the torus actions on $\mathcal{E}_{2\pi}$ to that of \mathcal{E}_0 by the matrix A.

Let $S^2 \subset M^4$ be the central 2-torus. That is, S is the set of points p so that if $p \in \mathcal{E}_t$ then p has the form (t,0). The matrix A has a single eigenvalue, which corresponds to the rotation that fixes the the base circle in each \mathcal{E}_{θ} . Therefore the only pure substructure of \mathcal{G} corresponds to the circle action that fixes S, and therefore has zero rank at points of S^2 . This proves that M^4 has no pure substructure of non-zero rank on any neighborhood of S^2 .

Since \mathcal{G} admits no pure substructure of positive rank on a neighborhood of S^2 , it admits no polarized substructure.

2 Elementary F-structures on Complete Flat Manifolds

Let X^n be a complete flat manifold. By the splitting theorem, $X^n = \overline{X}^k \times \mathbb{R}^{n-k}$, where \overline{X}^k has no lines. By the Soul theorem, \overline{X}^k has the structure of a normal bundle over a compact, totally geodesic submanifold S^l , called to soul. The choice of a soul in \overline{X}^k is unique, and since it is totally geodesic, it is flat. By the Bieberbach theorem, $S^l \approx T^l/\Gamma$, where T^l is the l-torus and Γ is a discrete group of automorphisms of T^l with $|\Gamma| \leq \lambda$, where $\lambda = \lambda(l)$ is a dimensional constant determined by the proof of the Bieberbach theorem (indeed $\lambda(l) \leq 2(4\pi)^{\frac{1}{2}l(l-1)}$).

Set $G = \pi_1(S^l)$. Since $S^l \hookrightarrow X^n$ is a homotopy equivalence, we also have $G \approx \pi_1(X^n)$. The Beiberbach theorem specifically states that a normal, abelian subgroup of finite index $A \subset G$ exists and acts as a group of translations on the universal cover \mathbb{R}^l of S^l .

Now consider the universal cover \mathbb{R}^n of X^n . We denote by E_n the Euclidean group of \mathbb{R}^n ; of course $E_n = \mathbb{R}^n \ltimes O(n)$. There is a representation $\pi_1(X^n) \hookrightarrow E_n$, which reduces to

a representation $A \hookrightarrow E_n$, the target of which is a discrete, commutative subgroup of the Euclidean group. Let $A' \subset A$ be the subgroup whose target consists of orientation-preserving Euclidean motions. Note that A' is still normal in $\pi_1(X^n)$.

The image of a set of generators of A' is a set $\{(w_i, e^{B_i})\}_{i=1}^N$ of commuting elements of E_n . Further, since A' acts as translations on \mathbb{R}^l , acts as rotations on an orthogonal subspace \mathbb{R}^{k-l} , and acts as the identity on the remaining orthonogal subspace \mathbb{R}^{n-k} , we have that $w_i \in \mathbb{R}^l$ and that $e^{B_i}w_i = w_i$.

We can use the generators of the action of A' as generators of an action of $(\mathbb{R}^N,+)$ on \mathbb{R}^n , by sending

$$(t_1, \ldots, t_N) \mapsto (t_1 w_1, e^{t_1 B_1}) \circ \ldots \circ (t_N w_N, e^{t_N B_n}).$$

The w_i are translations on \mathbb{R}^l and the e^{B_i} are rotations on the complimentary dimensions, so $w_i e^{B_j} = w_i$. Therefore

$$(t_i w_i, e^{t_i B_i}) \circ (t_j w_j, e^{t_j B_j}) = (t_i w_i + t_j w_j, e^{t_i B_i + t_j B_j})$$

$$= (t_j w_j, e^{t_j B_j}) \circ (t_i w_i, e^{t_i B_i})$$

and so this is indeed a group action of \mathbb{R}^N on \mathbb{R}^n . Since A' embeds in \mathbb{R}^N as the integer lattice, we get an action of \mathbb{R}^N/A' on \mathbb{R}^n/A' . Therefore we have a torus action (not necessarily effective) on \mathbb{R}^n/A' . Passing to a quotient of the torus, this is effective. This produces an elementary F-structure on X^n .