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August 4, 2011

1 An F-structure with no Polarized Substructures

1.1 The spaces Eθ

Let E = R×C and define Eθ = E /Γ, where Γ is the infinite cyclic group on one generator
γ which sends (x, v) 7→ (x+ 2π, veiθ). Note that Eθ is diffeomorphic to S1×C, although it
has a different geometric structure. Geometrically, we have E0 = E2π.

Define an action of R×S1 on E as follows. If (t, eis) ∈ R×S1 then define

(t, eis).(x, v) = (x+ t, vei(s+t
θ
2π )). (1)

Defining γ : R×S1 → R× S1 by γ.(t, eis) = (t+ 2π, eis), then note that if n, k ∈ Z we have(
γn.(t, eis)

)
.
(
γk.(x, v)

)
= (t+ 2πn, eis).(x+ 2πk, veikθ)

=
(
x+ t+ 2π(n+ k), vei(s+t

θ
2π+(n+k)θ)

)
= γn+k.(x+ t, veis+t

θ
2π )

= γn+k.
(
(t, eis).(x, v)

)
(2)

Therefore the action of R× S1 on E passes to both quotients, becoming an action of T 2 on

Eθ. This gives a pure T-structure of nonconstant rank.

1.2 An F-structure with no polarization

Now consider the space X diffeomorphic to [0, 1] × S1×C, but give each {θ} × S1×C the
metric structure of Eθ, and assign it the torus action given above for Eθ. Since E0 is isometric
to E1, we can identify {0}×S1×R2 and {1}×S1×R2. We will call the resulting space M4.
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If f : E2π → E0 is the canonical identification, the torus action on E2π pushes forward
to E0 via

f∗(t, e
is).(x, v) = (x+ t, ei(s+t)) = (t, ei(s+t)).(x, v) (3)

This produces the torus map (t, eis) 7→ (t, ei(s+t)), which in terms of the parameters {t, s}
is given by the map(

t
s

)
7→

(
t

t + s

)
=

(
1 0
1 1

)(
t
s

)
(4)

The space X is diffeomorphic to the 4-manifold T 2 × C. However, if one travels along the
latitude of the base T 2, the stalks of the F-structure (which are also 2-tori) have holonomy
given by the matrix

A =

(
1 0
1 1

)
∈ SL(2, Z), (5)

where A is regarded as an automorphism of the torus. Let G denote the T-structure obtained
on M4 obtained by gluing the torus actions on E2π to that of E0 by the matrix A.

Let S2 ⊂ M4 be the central 2-torus. That is, S is the set of points p so that if p ∈ Et
then p has the form (t, 0). The matrix A has a single eigenvalue, which corresponds to the
rotation that fixes the the base circle in each Eθ. Therefore the only pure substructure of
G corresponds to the circle action that fixes S, and therefore has zero rank at points of S2.
This proves that M4 has no pure substructure of non-zero rank on any neighborhood of S2.

Since G admits no pure substructure of positive rank on a neighborhood of S2, it admits
no polarized substructure.

2 Elementary F-structures on Complete Flat Manifolds

Let Xn be a complete flat manifold. By the splitting theorem, Xn = X
k × Rn−k, where

X
k

has no lines. By the Soul theorem, X
k

has the structure of a normal bundle over a

compact, totally geodesic submanifold Sl, called to soul. The choice of a soul in X
k

is
unique, and since it is totally geodesic, it is flat. By the Bieberbach theorem, Sl ≈ T l/Γ,
where T l is the l-torus and Γ is a discrete group of automorphisms of T l with |Γ| ≤ λ, where
λ = λ(l) is a dimensional constant determined by the proof of the Bieberbach theorem

(indeed λ(l) ≤ 2(4π)
1
2 l(l−1)).

Set G = π1(Sl). Since Sl ↪→ Xn is a homotopy equivalence, we also have G ≈ π1(Xn).
The Beiberbach theorem specifically states that a normal, abelian subgroup of finite index
A ⊂ G exists and acts as a group of translations on the universal cover Rl of Sl.

Now consider the universal cover Rn of Xn. We denote by En the Euclidean group of

Rn; of course En = RnnO(n). There is a representation π1(Xn) ↪→ En, which reduces to
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a representation A ↪→ En, the target of which is a discrete, commutative subgroup of the
Euclidean group. Let A′ ⊂ A be the subgroup whose target consists of orientation-preserving
Euclidean motions. Note that A′ is still normal in π1(Xn).

The image of a set of generators of A′ is a set {(wi, eBi)}Ni=1 of commuting elements of
En. Further, since A′ acts as translations on Rl, acts as rotations on an orthogonal subspace

Rk−l, and acts as the identity on the remaining orthonogal subspace Rn−k, we have that
wi ∈ Rl and that eBiwi = wi.

We can use the generators of the action of A′ as generators of an action of (RN ,+) on

Rn, by sending

(t1, . . . , tN ) 7→ (t1w1, e
t1B1) ◦ . . . ◦ (tNwN , e

tNBn).

The wi are translations on Rl and the eBi are rotations on the complimentary dimensions,
so wie

Bj = wi. Therefore

(tiwi, e
tiBi) ◦ (tjwj , e

tjBj ) = (tiwi + tjwj , e
tiBi+tjBj )

= (tjwj , e
tjBj ) ◦ (tiwi, e

tiBi)

and so this is indeed a group action of RN on Rn. Since A′ embeds in RN as the integer
lattice, we get an action of RN /A′ on Rn /A′. Therefore we have a torus action (not
necessarily effective) on Rn /A′. Passing to a quotient of the torus, this is effective. This
produces an elementary F-structure on Xn.
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