Lecture 9 - F-structures III - F-structures Imply Collapse
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1 Pure polarized collapse

Assume the (possibly noncompact) manifold X admits a pure polarized F-structure. This
means g is a locally constant sheaf whose orbits all have the same dimension. On such a
manifold we can split the metric into two parts ¢ = ¢’ + h where h vanishes on vectors
tangent to the orbits and ¢’ vanishes on vectors perpendicular to orbits. Set

gs 2529/4-}1. (1)

Theorem 1.1 (Pure Polarized Collapse) Assume a manifold M admits a pure polar-
ized F-structure. As & — 0, the metric gs given by has the following properties. The
injectivity radius at any point converges to zero, given any p,q € M, distg,(p,q) = O(9),
and the sectional curvature is uniformly bounded on any compact set.

Pf

We examine the curvature at the point p by constructing special coordinates near p.
Let k denote the dimension of the orbits Let N™~* be any submanifold through p transverse
to the orbits. Given coordinates 3, ...,y" % on N we can extend these coordinate functions
to a neighborhood of p by projecting along the orbits. Finally a k-torus acts locally on the
orbits themselves; the push-forward of a basis of its Lie algebra is an independent Abelian
set of Killing fields parallel to the orbits, and which span the distribution defined by the
orbits. The Frobenius theorem says we can integrate these to get the remaining coordinate
functions z!,..., 2" with coordinate fields # equal to the original killing fields. We can

choose the origin on any orbit to be its point of intersection with .

The coordinates field dzi = X; + V; can be decomposed into a part parallel to the
orbits X; and a part perpendicular to the orbits V;. Now make the change of coordinates
u® = §z'. Then
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As § — 0 the metric converges to a warped product metric.

2 Polarized collapse

If the polarization is not pure, it means that the various U, in the atlas are such that
the corresponding pure substructures G, possibly have different ranks (though the rank is
constant on each U,). We have to modify the metric on each U, separately, and at the
same time push the various U, away from each other.

Theorem 2.1 If G is a polarized F-structure on the compact manifold X, then X admits
a sequence of metrics gs so that

(1) The manifold (X, gs) collapses
(2) diamg,(X) < diamg, (X)|log d|
(8) Volg, (X) < Volg, (X)&*|log 8|, some k > 1

(4) Sectional curvature |K| is uniformly bounded.

Pf

Let {(U;,G;)}Y, be an atlas. Let f, : U, — [1,2] be a collection of functions, constant
on the orbits of G, so that f; = 1 in a neighborhood of 9U;, and so that (J; fi_1(2) = X.
Put

pi = slosz fi
We start with the metric go = log,(d) g. On U; we can write
g0 = ¢i + hu,

where ¢} is tangent to the orbits of G; and h; is perpendicular. Then define g; by

o = pigi +h1  onl
! 90 on X — Uy

Proceed inductively. Once g;_1 has been chosen, set g;_1 = g, + h; on U; where ¢} is parallel
to the orbits of G; and h; is perpendicular, and put

- Jpigi+hi onU;
g gi—1 on X — U;

Now (1), (2), and (3) are obvious, where k = minrank G;.



We check that sectional curvature is bounded. Let p € X let I = dim O,. Let {U;}5_,
indicate the set of atlas charts in which p lies. If we work on a normal atlas, we have that
the ranks I; of the {G;}j = 1° are strictly increasing: [y > --- > [, > k. The metric near
p is changed s times, and we will keep track of the changes in curvature as the metric is
changed each time.

Let N*~% be a submanifold transverse to the orbits of G;j, and choose coordinates

(z',...,z"y',...,y""") as before where p = (0,...,0), where the coordinate fields —%; are
just the action fields of G,, and where the Ql, . ,gn_l are constant on the orbits of G,.

Note that g% =0.

7

First we scale the coordinates

a' = z' logd Y = yi log 4.
In the new coordinates, we still have Zﬁ i =0, but also
dpJ = 1 ﬁi(glo& fi
dy* log 2 dy* f;
d2pj I 1 1 d2fj .i510g2 i 1 1 %%i log, f;
dy*dyt log 6 log 2 dykdgz fi log 6 log 2 dy’“ dy sz
2
+ 1 % % i slosz fi |
log2/) dy* dy' fj?

Therefore in these coordinates, the functions p’;/p; and p’f/p; are bounded as § — 0. Since
by the induction assumption the previous metric g;_; has bounded curvature, so does the
new metric.

O

3 Nonpolarized Collapse

Let G be an F-structure on the manifold M. We construct what is called a ‘slice polarization.’

3.1 Pure structure

Let 3; be the union of orbits of G of dimension i. Let 3., denote the set of points of 3; a
distance of ¢; or greater from 9%; (this is a “thickening” of ;). If N is any submanifold let
v(N) denote the normal bundle. Let S, , denote the set {v € v(Z,,) s.t. ||v|| < r;}, and let
e, r; denote the image of S, », under the exponential map. If r; is chosen small enough,
the exponential map is a diffeomorphism.



Lemma 3.1 There is an invariant metric g and numbers €;, r; so that

(1) Uzeiﬂ“i =M
(2) If i < j, then m; = myomj on X, , N ¢, r; -

O

Now set U; = X, ,. If ¢ € U;, then parallel translation from ¢ to m;(q) along a geodesic
induces an injection G, — Gr. ()

Lemma 3.2 There exists an inner product (, >p on gp, the Lie algebra of stalks G, that is
invariant under the action of G, and under the projections m; whenever m;(q) is defined.

O

For p € S, ,, let K be the (not necessarily closed) subgroup of G, whose lie algebra
is the orthogonal complement of the isotropy group of p. Set KZ, =m, 1(Km (p))- It follows
from the previous lemmas that the assignment p — K é is invariant under the local action

of G,.

We can now describe the collapsing procedure. Let f;, p; be as before. Fix g and let
Uiy oo Uyt <0 < be the U; with ¢ € U;. Let Z;, C--- C Zi, denote the subspaces
of T,M tangent to the orbits of Kél,...,K;j. Let W;, € --- C W, denote the subspaces
Wi, =7, (O ()5 -+ Wi, = 7 (On,. () Note that also Z;, € Wy,

]

Now let g be the invariant metric from Lemma Set go = log?éd - g, and write a
decomposition for gg
go = g1 +hi+ki,
corresponding to Z;,, Zfl- Wil,Wfl-. Put

_ {/7291 +hi+p%k pelh
g = .
90 otherwise

Proceed by induction, letting g;—1 = g; + h; + k; be the decomposition according to Z;,,
Zfl‘ NW;,, W, and putting

17 )

B {p2g; +hi+p ke peU
g = .
gi-1 otherwise

First we claim that curvature is bounded as § — 0. We establish a coordinate system.
Let
m; = dlmZL — 1 = dlmEl - rankFEi,



and let s!,...,s™i1 be coordinates on ¥;, constant on the orbits. Extend these to U;, via
mi,. Let s™iatl [ g™ be coordinates on Uj,, constant on the orbits. Extend these to
U;, NU;,. Proceed in this way, finally getting coordinates s',...,s™4 on U;, N---N Us;-
Now compliment these coordinates with additional coordinates 1, .., t"7% ™G that are
constant on the orbits of K’ and so that st,...,s% t} ... #"7% "™ is a complete system
that is transverse to the orbits of F. Finally let ', ... 2% be coordinates so that %,.. ., djik
are fields generated by the action of K ék.

Now we compute the curvature. First consider the change of metric gg — g1. Relabel
the coordinates

Zl = 51

ZnL,il — Smil

yl — smi1+1

mijfmil — smij
mi;—mig+1 tl
ynfijfmil _ tnfijfmij
371

x%,

The orthogonal decomposition of the tangent space given by Z;,, ZiJl- NW;,, W roughly cor-

responds to the selection of the x,y, z coordinates. Working in the 3;, stratulm, b, xh
are coordinates on the rank ¢; orbits themselves; this roughly corresponds to Z;,. The
subspace Zil1 N W, is the subspace directly perpendicular to the stratum; this essentially
parametrizes the orbits of F not in 3;,, that is, captures the y coordinates, and also captures

the remaining z*. Finally Wfl- parametrizes the orbits of ¥;,; in fact the coordinate func-

tions d%l, ceey d;l,ij project to zero in this space, or else the action of some of the other strata
Yiyy -+, 2, would act on the ¥ stratum, which is impossible, and also the action fields are

tangent to the orbits and Wlf is perpendicular to all obits. Since the y are coordinates on

strﬁta and the strata are perpendicular to Wfl-, we get that ﬁ is perpendicular to WiJl- as
well.



Thus we decompose the vectors

d

i blugy + biug o

d

@ = bgl;vy,l + bf;vy,Q

d 1 2 3
% = bzvz,l + bzvz,2 + bzvz,3

according to the decomposition Z;,, ZZ-JI- NW;,, W:. Multiplying the coordinate functions by

1

log 6, we have again that |pj’ /p;, | and |p; /ps,| are bounded. We get the following matrix
for g.

(bp)%+ (b2)*  bibl +b2Db2 bibl + b2b?
(logd)*g = b}bb;—&—bibz] (b%)g+(b§)2 bybl + 77
bpby + 0307 b bL+ b7 (D)% + (b2) + (b2)?
therefore
P22 U FBE PR B
no= pbeby +b3by  pP(b)0 + (By)° pPbibl + b2b2
polbl Vbl e LR+ (02 + R0

We make the change of coordinates z — p;, @, 2 — p;, !2. In the new coordinates the matrix
reads

(b2)2 +p72(b3)?  pbyby + p~ b2 PPbzb; + bib2
e I (1 E ) A
PPORbL B30T pPhybl 4 pbbs  pt(B1)7 + p?(b2)7 + (b2)?

We must deal with the p~'b2 term somehow. As we choose d differently, the b2 (and the
other by for K = x,y,z, i = 1,2,3) will be different. Let b7 5 denote b7 in he metric gs.
Since the coordinate fields d/dxk, 1 <k <11, are inside of Z;, to first order, we get
_b3(q) b2 5(q) =2 o(q)
lim *+~ = lim —/——+—"——
6—0 p—0
1 b2 s(g) —b2o(9)
lim
§—~0logd d/logd—0
= 0

Letting § — 0, the limiting matrix is just

(b)> 0 0
g = 0 (55)2 2



To continue, we now focus attention on U;,. We readjusts choice of coordinates, so
now

Zl = Sl

Miyg — gMiy

yl _ Smi2+1
Mi;—Miy gy
ij*mingl tl

y _
2l
s}

One considers the splitting of the tangent space via Z;,, Zfz N Wi,, Wé, and repeats the

computation of the curvature matrix as above.

To see collapse, the idea is that the orbits are almost totally geodesic as the collapsing
proceeds. To be specific, let ¢ € M and let O, be its orbit. Choose r so that the exponential
map on vectors perpendicular to the orbits is a diffeomorphism on vectors of length < r.
There is a number c so that dist(q, 97, /2(04)) > c. However there is a closed loop that
is noncontractible in T} /5(0,) and has length < ¢/d. For 6 < ¢/c’ this implies there is a
noncontractible geodesic in T} /2(0q4) of length < ¢’d; hence the injectivity radius converges
to 0 at q.

3.2 Nonpure collapse

If the structure is not pure, then we work on a regular atlas Uy,...,Us. Over U, we have
a pure substructure G, and we can carry out the procedure above. If we order the atlases
50 G1p C -+ C Ga,p, then the orbit stratification near p for higher U, refines that for lower
U,. We must also modify the cutoff functions p§' to be equal to 1 in some neighborhood of
0U,; this way the charts in the atlas are pushed away from each other as well as the strata
inside each chart.
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