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1 Introduction

The purpose of this chapter is to survey some recent results and state open ques-
tions concerning the rigidity of Riemannian manifolds. The starting point will be the
boundary rigidity and conjugacy rigidity problems. These problems are connected to
many other problems (Mostow-Margulis type rigidity, isopectral problems, isoperi-
metric inequalities etc.). We will restrict our attention to those results that have a
direct connection to the boundary rigidity problem (see section 2) or the conjugacy
rigidity problem (see section 4). Even with that restriction the connections are nu-
merous and the author was forced to select the topics covered here in accordance with
rather subjective criteria. A few of the topics not covered are mentioned in section
11 but there are others.

Although this chapter consists mostly of a survey of known results there are a
few results that appear here in print for the first time. In particular, many of the
applications of the Besson-Courtois-Gallot minimal entropy theorem that occur in
section 6.1 are new. Also the applications of the Pestov-Sharafutdinov theorem in
section 8 (which are due to Kleiner and the author) appear here for the first time.
Most of the proofs are omitted and the reader is referred to the original articles. The
exceptions are when the results are in print for the first time or when they are short
and instructive.

The author would like to thank Bruce Kleiner for feedback on the first draft of
this chapter. He would also like to thank Chang-Wan Kim for a careful reading of an
earlier draft.
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2 The Boundary rigidity problem

Let (M, ∂M, g) be a compact connected Riemannian manifold with smooth boundary.
Then ∂M inherits a “boundary distance function” dg, i.e., dg(p, q) is the “chordal”
distance in M between boundary points p and q. Since dg is (typically) sensitive to the
geometry of the interior of M , one may ask to what extent the metric space (M, ∂M, g)
determines M up to isometry; this is the Boundary rigidity problem. We formalize the
problem as follows. If (M, ∂M, g) and (M1, ∂M1, g1) are Riemannian manifolds with
boundary distance function dg and dg1 respectively, we call an isometry (∂M, dg) →
(∂M1, dg1) a boundary equivalence. A compact connected manifold (M, ∂M, g) is
boundary rigid if whenever (M1, ∂M1, g1) is compact connected then any boundary
equivalence (M,∂M, g) → (M1, ∂M1, g1) extends to an isometry (M, g) → (M1, g1).

All manifolds in this chapter are assumed to be connected, however the boundaries
of manifolds with boundary are not always connected. When (∂M, dg) and (∂M1, dg1)
are boundary equivalent we can (and will) identify ∂M1 with ∂M and say dg = dg1 .

One cannot expect that all compact manifolds with boundary will be boundary
rigid. Examples of non boundary rigid manifolds can be easily constructed by choos-
ing a metric so that no minimizing geodesic from boundary point to boundary point
passes through a given point x (e.g. make the distance from x to ∂M greater than
the diameter of ∂M as a subset of M). In this case a change of metric (or even
topology) in a small neighborhood of x will yield a metric g1 not isometric to g but
with dg = dg1 . The round hemisphere also provides an example since any metric
which is larger than the standard metric and agrees on the boundary will have the
same boundary distance function. More interesting counter examples are provided
by surfaces of revolution and their higher dimensional generalizations (see [We] and
[Cr-Kl1] which we will discuss below in section 4). But there are some boundary rigid
manifolds. For constant curvature spaces we have:

Theorem 2.1. Let (Mn, ∂M, g) be a compact subdomain with smooth boundary ∂M
of Euclidean space Rn, hyperbolic space Hn, or the open hemisphere of Sn. Then
(M, ∂M, g) is boundary rigid.

The hemisphere case was proved by Michel [Mi] (also see section 4) using the solution
to the Baschke conjecture for spheres (see [Be-Ka]), the Euclidean space case was
proved by Gromov (see section 5.5B of [Gro] or alternatively [Cr2]). The hyperbolic
space case can be proved from the minimal entropy theorem of [B-C-G2] (see section
6 for a discussion). In fact, the results extend somewhat beyond the subdomain case
(e.g. in the flat case one needs only assume that there is an isometric immersion of
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(Mn, ∂M, g) to Rn - the reader should consult the original sources for such extensions).
The only spaces of nonconstant curvature that are known to be boundary rigid are two
dimensional spaces of nonpositive curvature (see section 5), subdomains of negatively
curved symmetric spaces (see section 6), and some products (see section 9).

Because of the counterexamples we need to restrict the class of manifolds with
boundary that we consider. It is important that one can determine whether (M, ∂M, g)
belongs to the class by its boundary distance function d since we will then know that
any (M1, ∂M1, g1) which is boundary equivalent to (M,∂M, g) will also be in that
class.

There are two natural (for different reasons) such classes of (M, ∂M, g) we con-
sider, the “simple” case and the “SGM” (strong geodesic minimizing) case.

(M,∂M, g) will be called simple if the boundary is strictly convex and there is
a unique geodesic between any pair of boundary points. It is not hard to see (by
looking at geodesics leaving a fixed boundary point) that topologically M is a ball and
that this condition is determined by the boundary distance function. The simplicity
condition will guarantee that certain problems are elliptic, and also has the advantage
that any other metric g1 with dg = dg1 will have the same C∞ jet as g at ∂M . (This
was proved by Michel for the C2 jet. For the C∞ jet see [L-S-U].)

The SGM condition (which is given in terms of dg only) is harder to define. A
precise definition is given in [Cr1], but loosely speaking it means that all nongrazing
geodesic segments are strongly minimizing. By a nongrazing geodesic segment we
will mean a segment of a geodesic which lies in the interior of M except possibly for
the endpoints. A segment is said to minimize if its length is the distance between the
endpoints and to strongly minimize if it is the unique such path. Of course this loose
definition seems to rely on more than dg but the relationship is worked out in [Cr2].
Examples of such (M,∂M, g) are given by compact subdomains of an open ball, B,
in a Riemannian manifold where all geodesics segments in B minimize - in particular
all the spaces in Theorem 2.1.

Before going on much longer I should pose the question that is at the heart of the
matter:

Question 2.2. Let g0 be a Riemannian metric on B, the unit ball in Rn, such that
all geodesics minimize distance, and the distance from the origin to any point on the
boundary sphere is 1. (You might further assume that the boundary is strictly convex
or that the curvature is negative.) Then if g1 is any other Riemannian metric on B
with dg1 = dg0 must there be a point p ∈ B such that the minimum g1-distance from
p to the boundary is 1.

The only cases where this question has been answered are cases where g0 is shown
to be isometric to g1 and p is then the point corresponding to the origin. A positive
answer to this question for a large class of g0 would yield boundary rigidity in a
correspondingly large class. The proof of this conclusion is not too hard but we will
omit it here.

For a Riemannian manifold with boundary (M,∂M, g) we will let U+∂M represent
the open disc bundle of unit vectors at boundary points that point inwards into M .
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Note that orthogonal projection allows us to identify these vectors with the open unit
disc bundle of ∂M (i.e. the vectors tangent to ∂M whose length is less than one).
Similarly define as U−∂M those that point out. Thus if (M1, ∂M, g1) is a Riemannian
metric so that g|∂M = g1|∂M (in particular if dg = dg1) then we can identify the U+∂M
(and the U−∂M) from the two metrics.

We will say that (M,∂M, g) is lens equivalent to (M1, ∂M, g1) if for each V ∈
U+∂M the entering g-geodesic, cV (t) with c′V (0) = V and the entering g1-geodesic
c1V (t) with c′1V (0) = V exit in the same way in the sense that if t0 is the first time,
t > 0 such that cV (t) ∈ ∂M then the same is true for c1V , and further cV (t0) = c1V (t0)
and c′V (t0) = c′1V (t0). That is if we think of the two spaces acting as lenses with
geodesics as light rays, then they bend the light in exactly the same way.

It is easy to see that if (M,∂M, g) is lens equivalent to (M1, ∂M, g1) then dg = dg1 .
It is also not hard to see that if (M,∂M, g) is simple or SGM (and hence so is
(M1, ∂M, g1)) and dg = dg1 then (M, ∂M, g) is lens equivalent to (M1, ∂M, g1). The
easiest way to see this is to first consider the metric g and a fixed p ∈ ∂M and
consider the functions fp : M → R defined by fp(x) = d(p, x) and hp : ∂M → R by
hp(q) = d(p, q). Now consider q0 ∈ ∂M such that the minimizing geodesic from p to q0

does not graze. We see that∇fp(q0) is the (outward or tangent) unit vector tangent to
the geodesic from p to q0. But since fp|∂M = hp we see that the orthogonal projection
of ∇fp(q0) is just ∇hp(q0). Now since hp (and hence ∇hp(q0)) is the same for the
metric g1 we see that the exiting for the g1-geodesic from p to q0 agrees with that of g.
Reversing the roles of p and q0 we see that the geodesics have the same initial tangents
as well. This will allow us to conclude that the metrics are lens equivalent. Thus
the boundary rigidity question is closely related to the corresponding lens rigidity
question.

Given (M, ∂M, g) and (M1, ∂M, g1) such that g|∂M = g1|∂M then a geodesic conju-
gacy is a is a Ck diffeomorphism F : UM → UM1 between the unit tangent bundles
such that unit vectors based at boundary points go to corresponding unit vectors
(as discussed above), and such that gt

M1
◦ F = F ◦ gt

M wherever either (and hence
both) sides are defined. In the above gt represents the geodesic flow, i.e. for a unit
vector, V , gt(V ) = c′V (t) where cV is the geodesic with c′V (0) = V . In both the simple
and the SGM cases every geodesic in the interior of M is a subset of a minimizing
geodesic segment between two boundary points. Thus if dg = dg1 then we can define
(uniquely) such a geodesic conjugacy as follows. For V ∈ UM let −t0 be the smallest
t ≤ 0 such that cV (t) ∈ ∂M and let W = c′V (−t0) and hence gt0

M(W ) = V . We thus,
using again our identification of unit vectors of the two metrics at boundary points,
define F (V ) = gt0

M1
(W ).

The fact that F is well-defined follows from lens equivalence. In the simple case
F will be C∞, while in the SGM case F will be C0 and C∞ off a set of measure 0.
It follows directly from the definition that F (−V ) = −F (V ), however one cannot
assume that F descends to a map f : M → M1 (i.e., F may take two vectors based at
the same interior point to vectors with different base points). In fact if there is such
an f where F takes each unit vector based at x ∈ M to a unit vector at f(x) then f
would have to be an isometry and F = Df . To see this simply note that, by looking
at the F image of the tangent vector field of geodesic segments, f would have to take
each geodesic segment to a geodesic segment of the same length.
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It is also not hard to see that such a geodesic conjugacy will preserve the canonical
contact form and hence the Liouville volume form. And thus we get:

Lemma 2.3. If (M,∂M, g) is simple or SGM and (M1, ∂M1, g1) is boundary equiv-
alent to (M,∂M, g) then V ol(g) = V ol(g1).

One can also see the above result from Santaló’s formula (see section 3).

Since having conjugate geodesic flows is a stronger condition in general than hav-
ing the same boundary distance function one might hope to get rigidity for a larger
class of metrics than for the simple or SGM cases. However, there are counter-
examples based on the Zoll surfaces of revolution [We]. Specifically, examples were
created in [Cr-Kl1] of nonisometric metrics on the n-ball for which there is a geodesic
conjugacy as above (in particular the metrics and conjugacy agree on the boundary)
that preserves the standard contact forms.

In what follows there are many results where some extra assumption (usually a cur-
vature condition) is placed on the manifold (M1, ∂M1, g1). The expression (M, ∂M, g)
is boundary rigid among negatively curved spaces will mean that for any (M1, ∂M1, g1)
of negative curvature then any boundary equivalence (M, ∂M, g) → (M1, ∂M1, g1) ex-
tends to an isometry (M, g) → (M1, g1). We will use similar expressions for other
curvature type conditions.

3 Inverse kinematic problem of seismology

The history of the boundary rigidity problem goes back to 1905 to papers by Herglotz
[Her], and Wiechert and Zoepprtz [Wi-Zo] where they consider the case of radially
symmetric metrics on the ball B3 as a model of the earth. The next advances were
due to Romanov [Ro1] who considered the linearized problem about radial metrics.
In particular, he found in the radially symmetric case that you could determine a
function from its integrals along geodesics.

The next advance concerned isotropic metrics, i.e., g1 = λ(x)g0, where λ is a
smooth positive function on the manifold. In the case of simple metrics the major
advances were made by Mukhometov. He proved the two dimensional case in 1975
[Mu1, Mu2] (also see [Ar-Mi]) and the higher dimensional case in 1982 [Mu3]. His
results also contain nice stability estimates. Others independently proved such results
(for example see [Ro2]).

The case when M is SGM was resolved in [Cr2]. The proof is easy enough so
we present it here along with a stability estimate. There is a canonical measure dγ
on the space of geodesic segments (which in our case run from a boundary point to
a boundary point) Γ0 such that for every integrable function f on the unit tangent
bundle we have: ∫

Γ0

∫ L(γ)

0

f(γ′(t)) dt dγ =

∫

UM

f(u)du. (3.1)

In our case we can parameterize the geodesic segments by their initial tangents v ∈
U+∂M where U+∂M represents the unit tangent vectors to M whose base points are
on ∂M and which point “inward” (i.e., < v, N >≥ 0 where N is the inward normal).
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Santaló’s formula (which is used in the proof of many of the results we are discussing
in this paper) allows us to express dγ as < N, v > dv where dv is the measure which
locally is the product of the Riemannian measure on the base point with the standard
measure on a unit hemisphere. (All of the above have versions in the non SGM case.)

We let M be an n-dimensional manifold with boundary such that there two SGM
metrics: g0 with volume V0 =

∫
M

dx0 and g1 = λg0 of volume V1 =
∫

M
λndx0.

We let Γ0 be the space of unit speed geodesic segments in M0 (with endpoints in
∂M) with the usual measure. For γ ∈ Γ0 and i = 1, 2, we let Li(γ) represent the
length of γ in the gi metric while Li(γ) will represent the distance in gi between
the endpoints of γ. Of course L0(γ) = L0(γ) while L1(γ) ≥ L1(γ). Note that

L1(γ) =
∫ L0(γ)

0
λ(γ(t)) dt. Further, by applying equation 3.1 with f ≡ 1 we have

α(n − 1)−1
∫

Γ0
L0(γ) dγ =

∫
M

dx = V0 where α(n − 1) is the volume of the unit
n − 1 sphere. (This gives our alternative proof of Lemma 2.3). In what follows
c1 = α(n− 1)−1.

By a Hoelder inequality:

∫

M

λ2dx0 ≤
{ ∫

M

λndx0

} 2
n
{ ∫

M

dx0

}n−2
n

= V
2
n

1 V
n−2

n
0 . (3.2)

Using equation 3.1 (twice) we see:

∫

M

λdx0 = c1

∫

γ∈Γ0

∫
λ(γ(t))dtdγ0 = c1

∫

γ∈Γ0

L1(γ)dγ0

= c1

∫

γ∈Γ0

L0(γ)dγ0 + c1

∫

γ∈Γ0

(L1(γ)− L0(γ))dγ0

=

∫

M

dx0 + c1

∫

γ∈Γ0

(L1(γ)− L0(γ))dγ0

and hence

2

∫

M

(1− λ)dx0 = 2c1

∫

γ∈Γ0

(L0(γ)− L1(γ))dγ0 ≤ 2c1

∫

γ∈Γ0

L0(γ)− L1(γ)dγ0. (3.3)

Thus since
∫

M

(1− λ)2dx0 =

∫

M

λ2dx0 + 2

∫

M

(1− λ)dx0 − V0

using 3.2 and 3.3 we arrive at the stability estimate:

∫

M

(1− λ)2dx0 ≤ (V
2
n

1 − V
2
n

0 )V
n−2

n
0 + 2c1

∫

γ∈Γ0

L0(γ)− L1(γ) dγ0.

In particular if L0 = L1 then also V0 = V1 and we get the boundary rigidity result
that λ ≡ 1. Another consequence is that if L1 ≥ L0 (i.e dg1 ≥ dg0) then V1 ≥ V0. The
difficulty in using this stability estimate is that although Vi is determined by Li via
Vi = c1

∫
U+

i ∂M
Li(γv) < N, v > dv (where γv here is the geodesic in gi), in order to

determine how v depends on the endpoints involves the derivatives of Li.
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4 Conjugacy rigidity and related problems

One way of finding manifolds that are boundary rigid is to look at subdomains (sim-
ple or SGM) of closed (or more generally complete) Riemannian manifolds without
boundary that are geometrically rigid in some way and using a cutting and pasting
argument. In particular, let (M,∂M, g0) is a compact subset of a complete Rieman-
nian manifold (N, g0) without boundary. If (M1, ∂M, g1) (here M1 need not a-prioiri
be diffeomorphic to M but must have the same boundary ∂M) has dg = dg1 then
we can create a new complete Riemannian manifold (N1, g1) by cutting M out of N
and replacing it by N1. If (M, ∂M, g0) is simple then the new metric g1 on N1 will
in fact be smooth (as was pointed out in section 2). However, in the SGM case we
only get C0 and C∞ on N − ∂M , but this is often enough differentiability for our
purposes. Now if (N, g0) has the right type of rigidity we may be able to conclude
that g0 is isometric to g1 and hence that (M,∂M, g0) is boundary rigid. In fact most
cases where boundary rigidity has been proved have been proved this way.

For example (Michel [Mi]), let (M, ∂M, g0) be a subdomain of the standard n-
sphere such that M ∩ −M = ∅ (here −M is the image of M under the antipodal
map). If (M1, ∂M, g1) has dg = dg1 then we can do the cut and paste to both M
and −M to get a new Riemannian manifold such that for every point p all geodesics
leaving p minimize to length π, and pass through a point −p at length π. This is a
so called Blaschke metric and is isometric to the standard sphere since the Blaschke
conjecture for spheres has been solved ([Be-Ka]) and the proof is robust enough to
work for metrics with the type of differentiability we get. Thus such (M, ∂M, g0)
are boundary rigid. The same type of argument might be tried for subdomains of
the other rank one symmetric spaces of positive curvature, but the corresponding
Blaschke conjectures are still open.

Definition 4.1. If M and M ′ are Riemannian manifolds without boundary a map
F : UM ′ → UM between the unit tangent bundles is called a Ck conjugacy between
the geodesic flows if it is a Ck diffeomorphism and gM

t ◦F = F ◦ gM ′
t where gM ′

t (resp.
gM

t ) is the geodesic flow on M ′(resp. M). FkU(M) will refer to the Ck conjugacy
class of the geodesic flow on M . That is, M ′ ∈ FkU(M) if there is a Ck conjugacy
between the geodesic flows of M and M ′. M is called Ck conjugacy rigid if it is
isometric to all spaces M ′ ∈ FkU(M).

The cutting and pasting argument above allows us to conclude:

Lemma 4.2. Simple subdomains of a C∞ conjugacy rigid manifold are boundary
rigid.

Examples of C∞ conjugacy rigid manifolds are given by RP n with the standard
metric (by the Blaschke conjecture for spheres [Be-Ka]), compact surfaces of nonpos-
itive curvature (see section 7), compact flat manifolds, compact locally symmetric
spaces of negative curvature and some compact locally symmetric metrics built out
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of such products (see section 6), and compact manifolds that admit a parallel vector
field (see section 9). This gives new classes of manifolds with boundary that are
boundary rigid.

Not all compact manifolds without boundary are C∞ boundary rigid. In fact
for any given smooth manifold M one can put one of the metrics from [Cr-Kl1] on
a smooth ball B in M and extend it arbitrarily to the rest of M . One can now
deform the metric nontrivially on this ball keeping C∞ conjugacy. That is, there
is a 1 parameter family of metrics gt such that g0 is the original metric, gt agrees
with g0 outside B, the geodesic flow of gt is C∞ conjugate to the geodesic flow of g0

(preserving the contact form), but gt is not isometric to g0.

Some properties are always preserved under Ck conjugacies. C1-conjugacies al-
ways preserve the volume [Cr-Kl1]. It is still not known if C0 conjugacies do (even in
the negative curvature setting - but see [Ha2] when one metric is locally symmetric).
It is also known that the property “no conjugate points” (see Section 10) is preserved
under C0 conjugacies [Cr-Kl2]

We now give the definitions of some invariants of a compact Riemannian manifold
M without boundary and some of their relations. We will be concerned with the
extent to which the metric on M is determined by these invariants.

Definition 4.3.

The Spectrum, Spec(M), is the eigenvalue spectrum of the Laplace Beltrami op-
erator (counted with multiplicity).

The Length Spectrum, Lspec(M), is the set of all lengths of closed geodesics of M
(multiplicity is not counted). When M has nonpositive curvature (or more generally
no conjugate points) then all the closed geodesics in a given homotopy class have the
same length.

The Marked length Spectrum, MLspec(M), refers to the map which assigns to
each conjugacy class in π1(M) the length of the shortest closed geodesic in that free
homotopy class. Hence, in the case of nonpositive curvature, Lspec(M) is just the
image of MLspec(M).

These invariants are closely related to each other. In the case where M has nega-
tive curvature for example we know by [Du-Gu] that Spec(M) determines Lspec(M)
(the number of closed geodesics of a given length is not necessarily determined),
further F0U(M) determines and is determined by MLspec(M) (see [Ha1]), and of
course MLspec(M) determines Lspec(M). Whether, in the negative curvature case,
MLspec(M) determines F1U(M) is an open (and important) question. The 2-dimensional
case was solved in [Fe-Or].

The volume of M is determined by Spec(M), but it is not known (and it is
an important question) if the volume is determined by Lspec(M), MLspec(M), or
F0U(M). On the other hand, as we mentioned above, the volume is always deter-
mined by F1U(M).

There are by now a number of examples of isospectral, nonisometric manifolds
(including 2-dimensional constant negative curvature ones by Vignéras [Vi]). The
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negatively curved examples thus also have the same length spectrum. On the other
hand (see section 5) surfaces (2-dimensional), M and M ′, of negative curvature with
MLspec(M) = MLspec(M1) must be isometric.

A major open question in this area is the generalization to higher dimensions:

Question 4.4. Are compact negatively curved manifolds determined by their geodesic
flows or their marked length spectra?

In negative curvature all of the above rigidity questions “linearize” to the same
statement. This becomes: If g0 is a metric of negative curvature on a compact man-
ifold and gt a smooth 1-parameter family of metrics with the same length spectrum
(hence the same marked length spectrum by continuity) then gt is isometric to g0. This
question was resolved in [Cr-Sh] (see section 8). In contrast, without the curvature
assumption there are by now many examples of nontrivial isospectral deformations.
The first of these was given in [Go-Wi] and the chapter by Ballmann in this book will
describe some recent developments. Also see section 11.

Although there are thus no nontrivial 1-parameter families of negatively curved
manifolds:

Question 4.5. Can there be infinitely many nonisometric compact isospectral man-
ifolds of (pinched?) negative curvature?

One would approach the question by studying the space of isospectral metrics
(in the Ck topology) in two parts; compactness, and “local” uniqueness. Some work
has been done on the compactness part (for example [Ch-Ya, B-P-P, An, Br]). By
“local” uniqueness we mean uniqueness among metrics in some Ck neighborhood of
our given metric. Of course, the inherent infinite dimensionality of the problem makes
the local uniqueness problem quite a bit harder than the linearized (i.e., infinitesimal
uniqueness) problem. See section 8 and the chapter by Sharafutdinov for some results
of this type.

5 Nonpositive curvature in two dimensions

Other than the conformal case discussed in section 3 the other case where a large class
of manifolds are known to be boundary rigid or conjugacy rigid is in two dimensions
when the curvature is non-posiitve. The initial work was done independently by
Otal (see [Ot1] and [Ot2]) and the author (see [Cr3]) under a negative curvature
assumption and was extended to the nonpositive case (using the method of Otal) in
[C-F-F]. The best statements in the literature are:

Theorem 5.1. Every compact two dimensional Riemannian manifold (without bound-
ary) of nonpositive curvature is C0 conjugacy rigid.
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And in fact:

Theorem 5.2. If g and g1 are Riemannian metrics on a compact two dimensional
manifold (without boundary) having the same marked length spectrum where g has
nonpositive curvature and g1 has no conjugate points then g is isometric to g1.

One gets as a corollary that every SGM subdomain of such a surface is boundary
rigid. Further:

Theorem 5.3. Every SGM two dimensional Riemannian manifold of negative cur-
vature is boundary rigid.

Underlying all these results is the Gauss Bonnet Theorem which seems to be why
the arguments have not extended to higher dimensions. One of the fundamental
observations in Otal’s method is to notice that if three geodesics pass through a
point in M ′ then the sum of the angles between them is π while if the corresponding
geodesics (say via the conjugacy) in the negatively curved space M do not pass
through a point then they will form a geodesic triangle where the sum of the angles
is ≤ π by the Gauss-Bonnet Theorem and will be strictly less then π unless the
triangle has no area (or in the nonpositive curvature case has integral of curvature
= 0). By integrating this information appropriately one forces all such triangles to
be degenerate forcing the conjugacy to cover a map on the base which must be an
isometry by the discussion in section 2.

The argument in [Cr3] involved the study of Jacobi fields. Jacobi fields are vector
fields along a geodesic that arise as the variation fields to variations through geodesics.
Since a C1 conjugacy will give a correspondence between variations of geodesics it also
gives a correspondence between Jacobi fields. Besides the Gauss-Bonnet Theorem,
[Cr3] used the fact that if J(t) is a Jacobi field along a geodesic of M such that
J(0) = 0 then the corresponding Jacobi field J̄ satisfies J̄(t0) = 0 for some t0 (it
is just the intermediate value theorem). In higher dimensions this no longer clear
(though some such Jacobi fields must vanish). However, when n ≥ 3 if all such J̄
vanish somewhere than one can show that M and M ′ are isometric. So in some sense
this vanishing is the crux of the mater.

Cao in [Cao] took up the noncompact finite volume case. He showed that if
two orientable, uniform visibility surfaces of finite area and bounded non-positive
curvature have the same marked length spectrum, then they must be isometric.

6 Symmetric Spaces of negative curvature

In this section we introduce some new manifolds with boundary that are boundary
rigid. The main class are the subdomains of symmetric spaces of negative curvature.
The fact that these spaces are boundary rigid follow more or less directly from the
equality case in the minimal entropy theorem of Besson-Courtois-Gallot (see [B-C-G1]
or [B-C-G2]) which we now explain.
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A symmetric space M is a Riemannian manifold such that for every point p ∈ M
the geodesic symmetry Ip : M → M at p is an isometry. Ip is the map (in general
only locally defined - but defined globally for symmetric spaces) such that for each
geodesic c with c(0) = p we have Ip(c(t)) = c(−t) for all t ∈ R. The symmetric spaces
of negative curvature come in 4 families of metrics on Rn; the constant curvature
metrics (all n), the complex hyperbolic spaces (n = 2m), the quaternionic hyperbolic
spaces (for n = 4m), and the hyperbolic Cayley plane (n=16). A locally symmetric
space is a Riemannian manifold whose universal cover is a symmetric space. They
are also characterized as those metrics whose Riemannan curvature tensor is parallel.

The volume entropy Ent(g) of a Riemannian manifold is the exponential growth
rate of the volume, V ol(B(p, r)), of the metric ball of radius r in the universal covering
space centered at a lift of p. More precisely:

Ent(g) = limr→∞
( log(V ol(B(p, r)))

r

)
.

It is not hard to see that this is independent of the base point p. Another equivalent
definition (which is not hard to see) is that Ent(g) is the infimum of s such that

∫

M̃

e−sd(p,q)dq < ∞

where p is a fixed point in the universal cover, M̃ , and the integral with respect to
the Riemannian volume form dq.

When (M, g) is a compact manifold of negative curvature (see [Man]) or more
generally has no conjugate points (see [Fr-Ma]) then Ent(g) is just the topological
entropy of the geodesic flow.

Let (M, g0) be a compact manifold with a locally symmetric Riemannian metric
g0 of negative curvature. Although the theorem of Besson, Courtois, and Gallot in
[B-C-G2] is more general, for our purposes we need only consider the case of a different
metric g1 on M . (The general version involves maps from (M1, g1) to (M0, g0) of
arbitrary degree.)

Theorem 6.1. If (Mn, g0), n ≥ 3, is a locally symmetric space of negative curvature
and g1 is another metric on M then

Ent(g0)V ol(g0)
1
n ≤ Ent(g1)V ol(g1)

1
n .

Further, if equality holds then g0 is isometric to g1.

A number of important rigidity conjectures (e.g., the Lichnerowitz conjecture and
rigidity of negatively curved manifolds with smooth Anosov splitting) were resolved
by this theorem in [B-C-G2]. The consequence of this theorem proved in [B-C-G2]
relevant to our paper is that if a compact Riemannian manifold (M, g) has a geodesic
flow that is C0 conjugate to the geodesic flow of a locally symmetric space (N, g0)
and if the volumes agree then they are isometric. Thus as pointed out in section 4
this implies that if the conjugacy is C1 then the volume assumption can be dropped.

11



However, even more can be said if both spaces have negative curvature and one is
locally symmetric. Hamenstädt [Ha2] has shown that in this case the volumes must
be the same and hence the assumption on the volumes can be dropped. Thus one
gets:

Theorem 6.2. Compact locally symmetric spaces of negative curvature are C1 con-
jugacy rigid and C0 conjugacy rigid among negatively curved spaces.

Cutting and pasting yields (as was presumably known to the authors of [B-C-G2]).

Corollary 6.3. Compact subdomains of symmetric spaces of negative curvature are
boundary rigid.

Proof. Let (M,∂M, g0) ⊂ N where N is a symmetric space of negative curvature. Let
Γ be a cocompact discrete subgroup of the isometry group of N (i.e., N/Γ is a compact
locally symmetric space) such that for every γ ∈ Γ, γ(M)∩M = ∅. (This can be done
since by a result of Malcev [Mal] every finitely generated linear group is residually
finite. Thus if D is the diameter of M and we start with any discreet cocompact
action by a Γ0 we can choose a subgroup Γ such that for all x ∈ N and γ ∈ Γ
d(x, γ(x)) ≥ D.) This implies that a copy of (M,∂M, g0) lies in the compact locally
symmetric space N/Γ. The rest of the argument is just the cut and paste construction
described in section 4. The volume is the same since the boundary distance functions
are the same by Lemma 2.3. The entropy is the same since the geodesic flows are
conjugate. One can also see this directly from the alternative definition of entropy
by noting by the triangle inequality that for any p and q in the universal cover N we
have |d0(p, q)− d(p, q)| ≤ 2D for D the diameter of M , where d is the distance in the
metric induced from the pasted metric on N/Γ. (Notice that the original metric on
N will be changed on countably many copies M .) One thing to worry about is that
the resulting space will not a-priori be C∞. However the rigidity proof in [B-C-G2]
is robust enough to carry through in this case. ¤

The ideas in [B-C-G2] were extended in [Co-Fa] to prove rigidity for some products
of rank one symmetric spaces of nonpositive curvature.

In [Gro] Gromov introduced the notion of filling volume, FillV ol(Nn, d), for a
compact1 manifold N with a metric d (here d is a distance function which is not
necessarily Riemannian). To see the actual definition one should see [Gro], but it is
shown in [Gro] that when n ≥ 3

FillV ol(Nn, d) = infgV ol(Mn+1, g),

where M is any manifold such that ∂M = N (one can even take M = N × [0,∞)),
the infimum is taken over all Riemannian metrics g on M for which the boundary
distance function is ≥ d.

1There are also generalizations to the noncompact case (see [Gro]).
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Remark 6.4. In the case where d is the boundary distance function of some Rie-
mannian (Mn+1, g0) one can not only fix the topology of Mn+1 one can also restrict
to metrics g which agree with g0 when restricted to N .

To see this let g be a Riemannian metric on M whose boundary distance function,
dg satisfies dg ≥ d and consider the metrics on N × [0, 1] defined by

ge = (1− t)g|N + tg0|N + ε2dt2.

The volume of gε goes to 0 as ε goes to 0, while gε|N×{0} = g|N and gε|N×{1} = g0|N .
Thus we can define new metrics ḡε on M = M ∪N × [0, 1] by gluing on a collar with
arbitrarily small volume. (The lack of differentiability at the old boundary is not
a problem since one can smooth without changing the volumes or distances much.)
The only thing to check is that dgε ≥ d. To see this first note that g|N ≥ g0|N since
dg ≥ d. Thus on the collar gε ≥ g0|N + ε2dt2. This means that any curve in the collar
from (p, s) to (q, t) has length greater than or equal to d(p, q). This together with the
fact that dg ≥ d implies that dgε ≥ d.

We will call (M, g) a filling of (∂M, dg0) if both dg ≥ dg0 and g|∂M = g0|∂M .

Question 6.5. Let (Ω, g0) be a compact (or simple) subdomain of a simply connected
space of nonpositive (or negative) curvature. Is

FillV ol(∂Ω, dg0) = V ol(Ω, g0)?

Further if (Ω̄, g) is a filling with V ol(g) = V ol(g0) must (Ω̄, g) be isometric to (Ω, g0)?

The rigidity case above would imply the boundary rigidity of (Ω, g0). In [Gro]
Gromov showed that the answer was yes for subdomains of Rn (in fact for more general
flat manifolds) which is how subdomains of Rn were first proved to be boundary rigid.

Another consequence of Theorem 6.1 (which was also pointed out in [Iv]) is:

Corollary 6.6. The answer to the above question is yes for subdomains of symmetric
spaces of negative curvature.

Proof. We use the cut and paste argument of the previous corollary replacing the
metric g0 in a subdomain of a locally symmetric space with g. There is again more
than one way to compare the entropies of g and g0, but we will look at the alternative
definition given above as in the proof of the previous lemma. In this case triangle
inequalities (and the condition on the boundary distance functions) yield d(p, q) ≥
d0(p, q)−2D for some fixed number D. Hence we can conclude that Ent(g) ≤ Ent(g0).
Hence by Theorem 6.1 V ol(g) ≥ V ol(g0). The rigidity in Theorem 6.1 yields the
rigidity here as in the previous corollary. ¤

Note that the result in section 3 says that if we restrict our ”fillings” to metrics
that are pointwise conformal to g0 (i.e. the only other metrics we consider are of the
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form g1 = f 2(x)g0) then dg1 ≥ dg0 implies V ol(g1) ≥ V ol(g0) with equality if and only
if f ≡ 1.

The case of surfaces (two dimensions) was taken up in [Iv]. In two dimensions
the filling volume question is a little different then in higher dimensions since the
topology of the “filling” can affect the minimum of the area. The main result in [Iv]
shows that for simple metrics (D, g0) on the 2-disk D then any metric g1 on D such
that dg1 ≥ dg0 we have V ol(g1) ≥ V ol(g0).

A result in [C-D-S] gives a local answer to the question for simple metrics of
negative curvature. In the statement below C3,α(S2τ ′M) represents the C3,α topology
with respect to a fixed underlying metric on the space of symmetric 2-tensors .

Proposition 6.7. For any simple metric g0 of negative curvature there is a neigh-
borhood W ⊂ C3,α(S2τ ′M) of g0, with any 0 < α < 1, such that if a metric g1 ∈ W
induces the same Riemannian metric on the boundary as g0 and dg1 ≥ dg0 then
V ol(g1) ≥ V ol(g0) with equality if and only if g1 is isometric to g0.

In fact the curvature condition above can be substantially relaxed (see the chapter
by Sharafutdinov in this book).

By analogy with the above, it is natural to pose the following question (which
would resolve the local rigidity question and hence yield finiteness theorems as in
section 4):

Question 6.8. Let g0 be a metric of negative curvature on a compact manifold
(without boundary). Is there a Ck neighborhood, W , of g0 such that for all g1 ∈
W ∩{g1|MLspec(g1) ≥ MLspec(g0)} then V ol(g1) ≥ V ol(g0) with equality holding if
and only if g1 is isometric to g0?

In fact one could ask the question for g1 a more general metric of negative curva-
ture. This will be taken up in a future joint work of the author with Dairbekov where
the two dimensional inequality should be resolved along with the n−dimensional case
when g1 = f 2 g0.

7 Nonpositive curvature in higher dimensions

The condition of nonpositive curvature plays a role in many of the rigidity results we
have discussed. In this section we will discuss some results where all the manifolds
are assumed to have nonpositive curvature.

The first rigidity result of this type is the “higher rank rigidity theorem”. The
rank, Rank(M) of such a space, M , is the minimum (over all geodesics) of the di-
mension of the space of parallel Jacobi fields along a geodesic (it is always ≥ 1).
Rank(M) ≥ 2 can be expressed in terms of the existence of flat half planes in the
universal cover (e.g. see the theorem below).
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The initial proof of the result was due to Ballmann [Ba] and independently by
Burns and Spatzier [Bu-Sp]. It was later extended by many others. The version
below is proved in [Eb-He] (The result in [Eb-He] is somewhat more general than
finite volume.):

Theorem 7.1. Let M be a finite volume nonpositively curved Riemannian manifold
and M̃ = X0×X1×X2× ...×Xk the de Rham decomposition of the universal cover M̃
(with X0 the Euclidean part). Then each Xi (i ≥ 1) is either an irreducible symmetric
space or it contains a geodesic that does not bound a flat half plane in Xi.

The corresponding result for conjugacy rigidity [C-E-K] is:

Theorem 7.2. If (M, g) and (M1, g1) are compact manifolds of nonpositive curvature
with rank(M) ≥ 2, and (M1, g1) ∈ F0U((M, g)) then g1 is isometric to g. Further,
when n ≥ 3 the isometry above can be chosen to induce the “same” action on the
fundamental group as the conjugacy F .

The easiest nontrivial examples of nonpositively curved manifolds that have rank
1 but whose fundamental group is not hyperbolic (and hence have no metrics of nega-
tive curvature) are the so called graph manifolds. Though there have been a number
of definitions of “graph manifold” we will use a the rather general one used in [Le]: a
graph manifold is a 3 dimensional Haken manifold each of whose components under
the minimal decomposition (in the sense of [Ja-Sh, Jo]) is Seifert fibered. The de-
composition is by cutting along embedded incompressible tori and Klein bottles. Not
all such manifolds admit metrics of nonpositive curvature (see [Le] and [Bu-Ko]) but
we will only be concerned with the ones that admit nonpositively curved Riemannian
metrics. The following is proved in [Cr1].

Theorem 7.3. If (M, g) and (M1, g1) are compact nonpositively curved graph mani-
folds and (M1, g1) ∈ F0U((M, g)) then g1 is isometric to g.

One way to construct some such graph manifolds of nonpositive curvature is to use
two building blocks Bi = Σ2

i×S1 where Σ2
i is a surface of nonpositive curvature with a

boundary consisting a closed geodesic (to get smooth results assume that the metric is
flat in a neighborhood of the boundary). Notice that the boundary is a totally geodesic
flat torus. We can thus glue two such blocks together by reversing the two factors
in the boundary tori (assuming the appropriate lengths are compatible) yielding a
manifold without boundary of nonpositive curvature. One can easily generalize this
to many blocks Bi where the surfaces Σi have many geodesics on the boundary.

The topology of graph manifolds forces metrics of nonpositive curvature to have
a very restricted geometric form as studied in [Sch] and [Le]. They are the union over
totally geodesic boundaries of (one or more) pieces (the “geometric Seifert compo-
nents”) whose universal covers are isometric to a Riemannian product X × R where
X is a surface of nonpositive curvature with geodesic boundary. They thus become
amenable to some techniques developed for the results in section 9.
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8 The linearized and local problem

The deformation boundary rigidity problem attempts to answer the question: Can one
deform the metric on a simple (or SGM) manifold (M, ∂M, g) keeping the boundary
distance function fixed? In other words: If gt is a 1-parameter family of metrics
on M with g0 = g such that dgt = dg, must there be diffeomorphisms φt leaving
∂M pointwise fixed such that φ∗t (gt) = g? If this is true then (M, ∂M, g) is called
deformation boundary rigid.

Linearizing this problem about g0 leads to the following question: If T is a symmet-
ric n-tensor such that for every geodesic segment γ from boundary point to boundary
point we have

0 = Iγ(T ) ≡
∫ L(γ)

0

T (γ′(t), γ′(t), ..., γ′(t))dt,

then T = dω for a an (n − 1) symmetric tensor ω. In the above the operator d is
the symmetrized covariant derivative (see [Cr-Sh] for more details). The metric case
corresponds to the question for symmetric 2-tensors (representing in our case d

dt
gt)

and we call a metric g0 which satisfies the above for 2-tensors infinitesimally rigid.
The map γ → Iγ(T ) is called the ray transform of T . In a separate chapter in this
book Sharafutdinov goes into more detail and surveys the known results in this area
and in particular discusses how infinitesimal rigidity can yield deformation rigidity
via ideas of [Gu-Ka1]. Here we will only mention a few of the results. We will stick
to the case of negative curvature and simple metrics (in the “with boundary” case)
even though all of the results have been improved to hold for wider classes (e.g. the
geodesic flow is Anosov, or subdomains of simple metrics). The reader is referred to
the other chapter for these improved results. Our purpose here is to show how one can
sometimes use such infinitesimal rigidity results along with symmetry to get global
rigidity results. The results of that nature stated here can of course be improved
using the improvements covered in the other chapter.

We start with the theorem of Pestov and Sharafutdinov (see [Pe-Sh]);

Theorem 8.1. If (M,∂M, g) is simple and has negative curvature then it is defor-
mation boundary rigid.

The proof of this theorem uses the Pestov identity which is one of the fundamental
tools in the study of the linearized and local versions of these problems.

The analogue of this theorem for manifolds without boundary is [Cr-Sh]:

Theorem 8.2. Compact negatively curved manifolds are spectrally rigid.

It would possibly be better to say “deformation spectrally rigid” but the above
terminology was introduced in [Gu-Ka1]. What it says is that if gt is a smoothly
varying family of Riemannian metrics on a compact manifold such that g0 has negative
curvature and for all t the eigenvalue spectrum of gt is the same as that of g0, then
gt is isometric to g0.
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Guillemin and Kazhdan had proved this result in two dimensions [Gu-Ka1] and
in the n-dimensional case when g0 satisfied a pointwise pinched negative curvature
condition [Gu-Ka2]. Min-Oo [MO] had extended this to the case where g0 has negative
definite curvature operator.

The proof also yields the corresponding rigidity for the length spectrum (i.e. if the
set of lengths of closed geodesics are the same for the gt then they are isometric) and
hence the marked length spectrum. Both of the above theorems come from versions
that concern symmetric n-tensors (not only 2-tensors) as above. Other consequences
(extensions of results in [Gu-Ka2]) which are in some sense global rigidity results can
be found in [Cr-Sh]:

Theorem 8.3. Let (M, g) be a compact negatively curved Riemannian manifold with
simple length spectrum, and ∆ : C∞(M) → C∞(M) be the corresponding Laplace-
Beltrami operator. If real functions q1, q2 ∈ C∞(M) are such that the operators ∆+q1

and ∆ + q2 have coincident spectra, then q1 ≡ q2.

In the above simple length spectrum means that no two closed geodesics (traversed
once) have lengths that are rational multiples of each other. This is a generic condi-
tion.

Corollary 8.4. Let M be a compact negatively curved manifold and f : M → R a
C∞ function. If f integrates to zero along every closed geodesic then f must itself be
zero. In particular a function is determined by its integral along closed geodesics.

For the rest of this section I want to discuss some rigidity consequences of Theorem
8.1 that were developed by the author and Kleiner but never published.

Proposition 8.5. Let (M, ∂M, g) be simple and have negative curvature. If V is
a tangent vector field to M defined along ∂M such that for every geodesic segment
γ : [0, 1] → M with γ(0) and γ(1) in ∂M , we have

< γ′(0), V (γ(0)) >=< γ′(1), V (γ(1)) >

then there is an extension of V to a Killing vector field on M .

A Killing field, V , is an infinitesimal isometry in the sense that the local one
parameter group of local diffeomorphisms, V t, that it generates are local isometries.
Of course any Killing field when restricted to ∂M must satisfy the above condition
by the first variation formula. Killing fields are precisely those fields V which satisfy
LV g = 0 or, equivalently, whose dual one form ω satisfies dω = 0 (with the d from
above). If g1 is a metric with dg1 = dg then for each g-Killing field V the proposition
yields a g1-Killing field V̄ with the same (in the sense of section 2) restriction to the
boundary.

The proposition follows from the version of Theorem 8.1 for one forms:
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Proof. Let W be an arbitrary C∞ extension of V and ω its dual one form. Our
condition implies that dω integrates to 0 along every geodesic segment. The analogue
of Theorem 8.1 gives us a one form ω̄ which is 0 at ∂M and such that dω = dω̄.
Hence d(ω − ω̄) = 0 and the dual of ω − ω̄ is our required Killing field.

¤
Let (M, ∂M, g) be a simple space of negative curvature with a Killing field V

and let (M1, ∂M, g1) also have negative curvature and dg = dg1 . Then the above
gives us a Killing field V1 on M1 with the same boundary values as V . Now if for
some open U ⊂ ∂M the flow of both V and V1 are defined for t ∈ [0, ε) then the
neighborhoods {V t(p) ∈ M |t ∈ [0, ε) and p ∈ U} and {V t

1 (p) ∈ M |t ∈ [0, ε) and
p ∈ U} are isometric via the map f defined by f(V t(p)) = V t

1 (p). This follows since
Df |V t(p) is the composition of three linear isometries DV −t|V t(p), the identification of
TpM with TpM1, and DV t

1 |p. Note here that for any other Killing field W and its
corresponding Killing field W1 we have Df(W ) = W1 by the uniqueness properties
of Killing fields (if the C1 jets of two Killing fields agree at a point then they agree
everywhere in a connected set).

It is not hard to extend the argument to see that if each point in M can be written
as V t(p) then g1 is isometric to g. In fact more is true. On a space (M, ∂M, g) we
say that m ∈ M is “reachable from the boundary via Killing fields” if there is a finite
sequence {(Vi, ti)|i = 1..k} of Killing fields Vi and real numbers ti such that

m = V tk
k (V

tk−1

k−1 (...V t1
1 (p)...))

for some p ∈ ∂M where V t
i represents the local flow generated by Vi for time t. One

can extend the above reasoning to get the following rigidity result:

Corollary 8.6. If (M, ∂M, g) is simple, has negative curvature, and every m ∈ M
is reachable from the boundary via Killing fields then it is boundary rigid among
negatively curved spaces.

We will say a space (M, g) (with or without boundary) is a space of revolution
if there is a point o (the “origin”) such that if Io is the connected subgroup of the
isometry group of M that fixes o then the set of differentials acting on ToM is the full
group SO(n). Another way of saying this is that in normal polar coordinates (r, Θ)
the metric has the form ds2 = dr2 + g2(r)dΘ2 where dΘ2 is the standard metric on
the n− 1 sphere and g : R+ → R+ is 0 only at 0.

Let D be a convex subdomain of a simply connected negatively curved space of
revolution with o /∈ D. let q ∈ ∂D be a closest point to o, and Ln−2 be any (n− 2)-
dimensional subspace of the parallel translate, Ln−1, of Tq∂D along a minimizing
geodesic to o. Then, since expo(L

n−1) ∩D = ∅, the Killing field that comes from the
rotation leaving Ln−2 fixed will work in the above to show that D is boundary rigid
among negatively curved spaces.

Another quite different way to use Proposition 8.5 on spaces of revolution is the
following which generalizes to higher dimensions a two dimensional result proved in
[Ar-Mi]:
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Corollary 8.7. Let (M,∂M, g) be a simple manifold of negative curvature which is a
space of revolution, then it is boundary rigid among negatively curved spaces. Further,
any simple manifold of negative curvature (M,∂M, g) satisfying

• g|∂M is a round metric on the n− 1 sphere.

• dg(p, q) = f(d̄(p, q)) where f : R+ → R+ is a function and d̄ is the distance
function with respect to the boundary sphere metric.

must in fact be a space of revolution.

We note that all spaces of revolution clearly satisfy the two conditions in Corollary
8.7. Since this corollary does not appear in the literature we provide a proof here.

Proof. We do the second part first. Let (M, ∂M, g) have negative curvature and
satisfy the two conditions, and let V be a Killing vector field to ∂M coming from the
action of SO(n − 1) on ∂M . We can of course think of V as a tangent vector field
to M along ∂M . Since for every p and q in ∂M , d̄(V t(p), V t(q)) = d̄(p, q) we have
dg(V

t(p), V t(q)) = dg(p, q) and < γ′(p), V (p) >=< γ′(q), V (q) > for the (unique by
simplicity) geodesic segment, γ from p to q by the first variation formula. Thus by
Proposition 8.5 every such Killing field extends to a Killing field on M . Integrating
these fields we see that the action of SO(n − 1) on the boundary extends to an
isometric action on all of M . For the rest of the argument we show in the next
paragraph that there is an origin o.

The normal geodesic leaving any boundary point p must exit at the antipodal point
to p and normal to the boundary since the whole geodesic will be fixed by any isometry
that leaves p fixed. Let 2r be the (constant by the homogeneity of the boundary)
length of these normal geodesic segments. The obvious map H : ∂M × [0, 2r] → M
must have some singular points or else it would be a double cover of M which is
diffeomorphic to a ball since it is simple. Such a singular point is a focal point
γ(t0), of the boundary along some normal geodesic γ. The focal point has index
n − 1 because of the isometries that fix γ and hence is the only focal point along
this geodesic by the curvature assumption. In particular dH(γ(0),t0)(V ) = 0 for all
vectors tangent to ∂M × {t0} ⊂ ∂M × [0, 2r] at (γ(0), t0). The Jacobi fields along γ
defining this focal point are the same Jacobi fields along γ that define the boundary
focal points to γ(2r) along −γ since all normal geodesic segments are normal at both
endpoints. This means that the distance to the focal locus from γ(2r) along −γ is
2r− t0. The isometry group forces the same picture along every normal geodesic. In
particular t0 = 2r− t0 and so the focal point occurs at distance r from the boundary
along every normal geodesic. Thus the focal locus H(∂M × {r}) is a single point o,
our origin, since dH is 0 on all tangent vectors to ∂M × {r}.

Now to see the first part let (M1, ∂M, g1) have negative curvature and dg1 = dg.
Then it satisfies the two conditions above so by the part already proven (M1, ∂M, g1)
is a space of revolution. That means, in particular, that for every 2-plane P in
ToM1, expo(P ) is a totally geodesic submanifold and hence has negative curvature.
The corresponding surface in M (i.e. the totally geodesic surface having the same
boundary circle) will also have negative curvature and the same boundary distance
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function. Hence the surfaces are isometric by section 5. But that means that g(r) =
g1(r) (where g(r) comes from the metric representation ds2 = dr2 + g2(r)dΘ2) and
thus the spaces are isometric.

¤

9 Products

The only cases of rigidity in higher dimensions without any curvature assumptions
involve manifolds that have some sort of product structure. In [Cr-Kl1] it was shown
that all compact Riemannian manifolds X are stably C1-conjugacy rigid in the sense
that X × S1 is C1 conjugacy rigid. More generally

Theorem 9.1. Let M be a compact Riemannian manifold with a nontrivial parallel
vector field. Then M is C1 conjugacy rigid.

In X × S1 the parallel vector field points in the S1 direction. In general, by the
DeRham splitting theorem, if M admits a parallel vector field then the universal cover
of M splits off a line (though M itself need not be a product). Surprisingly it is still
not known if M is C1 conjugacy rigid if rather than a parallel vector field M admits
a parallel line field (hence a double cover admits a parallel vector field). Of course
the double covers will be isometric but there is no guarantee that the isometry will
commute with the covering maps.

The idea behind the proof of Theorem 9.1 is to study Jacobi fields (or more
precisely Jacobi tensors) perpendicular to the “vertical” direction. Using an extremal
property of Jacobi fields and the fact that the volume is the same it is shown that the
conjugacy must map the parallel vector field in one space to a parallel vector field in
the other. This uses the C1 conjugacy. That reduces the problem to the case where
the universal covers of both manifolds are Riemannian products.

Now if two manifolds are nontrivial products [Cr-Kl1] studies C0 conjugacies be-
tween the geodesic flows. The techniques developed here were later applied in [C-E-K]
and [Cr1] (also see section 7). In general one needs to assume an additional assump-
tion that the conjugacy “preserves angles”. For a Riemannian product M1× ...×Mk,
we define α = (α1, ..., αk) : U(M1 × ... × Mk) −→ Rk by αi(v) = |πi∗(v)| where
πi : M1 × ...×Mk −→ Mi is projection onto the ith factor. The most general result
is:

Proposition 9.2. Let M = M1×M2 and N = N1×N2 be Riemannian products such
that dim(Mi) 6= 0. If there is a uniform conjugacy F : UM → UN which preserves
α then M is isometric to N .

In the above M and N are not assumed to be compact, but the conjugacy is
assumed to be uniformly continuous. In many cases it is not hard to prove that a
conjugacy preserves α. A particular consequence is:
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Proposition 9.3. Let M = M1 ×M2 be a compact Riemannian product such that
dim(Mi) 6= 0, and let N = X1×X2× ...×Xk where each Xi is a compact Riemannian
manifold of negative curvature (or more generally a manifold with Anosov geodesic
flow). If there is a C0 conjugacy F : UM → UN then M is isometric to N .

10 No conjugate points

One definition of “no conjugate points” for a Riemannian manifold (M, g) without
boundary is that in the universal cover all geodesics are minimizing. The official
definition is that no Jacobi field along any geodesic vanishes twice. The easiest
examples of manifolds without conjugate points are the nonpositively curved ones.
There are other examples (see for example [Gul]), however, there is no example known
of a compact manifold that admits a metric with no conjugate points metric that does
not also admit a different metric with nonpositive curvature.

The purpose of this section is to survey the rigidity results related to the no conju-
gate points condition. It is a natural condition for our setting in that (see [Cr-Kl1]) it
is preserved by C0 conjugacies, i..e, if (M, g) and (M1, g1) have C0 conjugate geodesic
flows and (M, g) has no conjugate points then (M1, g1) has no conjugate points. On
the other hand rigidity results are hard to come by since the condition is not a con-
vexity condition as curvature conditions are, but only a global length minimization
condition.

The most celebrated such rigidity result is the so called E. Hopf conjecture solved
by Burago and Ivanov [Bu-Iv1] (The two dimensional case had been solved by Hopf
[Ho]):

Theorem 10.1. A metric on the n-torus without conjugate points is flat.

One could use this to conclude that any SGM subdomain of a compact flat man-
ifold is boundary rigid. Another way of seeing this had been found in [Cr2]. For
x ∈ M let V ol(B(x̄, r)) be the volume of the ball of radius r in the universal cover
of M centered at a lift x̄ of x. This is well defined since all such balls have the same
volume. It was shown in [Cr2] that if one fixes the radius r > 0 then the average
over x (with respect to the standard volume on M) of V ol(B(x̄, r)) is greater than or
equal to the volume of the flat ball of radius r with equality if and only if the metric is
flat. Also in [Cr2] is a more general result relating the metric entropy to the average
volume of balls. To get the boundary rigidity for SGM submanifolds [Cr2] considers
the asymptotics as r goes to ∞.

If (M, g0) is a complete Riemannian manifold satisfying some property P (such
as “no conjugate points”), then we will say that (M, g0) is rigid under compactly
supported perturbations (respecting the property P) if any metric g1 on M which
satisfies property P and coincides with g0 outside a compact set K ⊂ M is isometric
to g0.
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Euclidean space was shown to be rigid under compactly supported perturba-
tions with nonpositive (or nonnegative) sectional curvature in [Gr-Wu]. In fact they
are rigid under compactly supported perturbations having no conjugate points (see
[Gr-Gu] for the two dimensional case and [Cr2] in general).

In [Cr-Kl2] this was extended to:

Theorem 10.2. Let X be a 1-connected Riemannian manifold without conjugate
points, and let g0 be the Riemannian product metric on X × R. Then g0 is rigid
under compactly supported perturbations having no conjugate points.

In the proof, one first shows that if the metric is changed in a compact region
without introducing conjugate points then the boundary distance function of the
region does not change. One then proves boundary rigidity for such regions to get
the result.

The case where X above is not simply connected was considered in [Cr-Kl3]. This
case poses many difficulties not seen in the simply connected case. In particular, so
far one cannot handle spaces whose fundamental groups grow too fast. Never-the-less
many cases are proven in [Cr-Kl3]. One result is:

Theorem 10.3. Let (M, g0) be a complete flat manifold. Then g0 is rigid under
compactly supported perturbations having no conjugate points.

The case where M is compact relies on Theorem 10.1 while the non compact case
comes from [Cr-Kl3].

11 Some Other Related Topics

There are many related topics that we have not taken up here. We mention a few
briefly now.

One might ask why one should consider Riemannian metrics rather than say
Finsler metrics (i.e. there is a Banach norm in each tangent space rather than an
inner product). The boundary rigidity problem in general is under-determined so one
cannot expect uniqueness. Arcostanzo in [Ar] shows among other things how one
can explicitly construct many Finsler metrics on the 2-disk with the same boundary
distance function as the flat ball. Thus one needs to add extra conditions to have
any chance. One natural condition to consider is when the curvature is parallel. Two
places where such rigidity results are proved are [Ki-Yi] and [Fo]. Another example
where rigidity (in the sense of Theorems 5.1 and 5.2) fails to hold if the metric is not
assumed to be Riemannian can be found in [Bo]. Some nice results of filling volume
type (as in section 6) for Finsler metrics can be found in [Iv] and [Bu-Iv2].

Without curvature assumptions there are now many examples of isospectral met-
rics and isospectral deformations. See for example the chapter in this book by Ball-
mann. Nilpotent groups and their quotients have served as a rich source of examples
of nontrivial isospectral deformations. However there is conjugacy rigidity inside this
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class (both manifolds assumed to be nilmanifolds) see [G-M-S, Eb, Fa]. A nice survey
of this subject can be found in [Go-Go].

Rigidity questions for Lorentz metrics has been studied in [A-D-H]. While [Grog]
considers magnetic flows rather than geodesic flows.
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no. 2, 197–209.

[Ba] W. Ballmann, Nonpositively curved manifolds of higher rank, Annals of Math
(2) 122 (1985), 597-609.

[Be] M. Berger, Une bourne inférieure pour le volume d’une variété riemannienne
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[Vi] M. Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann.
of Math. 110 (1980), 21-32.

[We] A. Weinstein, Fourier integral operators,quantization and the spectra of Rie-
mannian manifolds, Colloques Internationaux C.N.R.S., no. 273- Géométrie
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