Math 4250, Spring 2024

Problem Set 0

Review problems for ODE, including complex numbers

Due: No due date; no need to turn in.

1. Let $u(t)$ be the solution of $u^{\prime}=3 u$ with initial value $u(0)=A>0$. At what time T is $u(T)=2 A$?
2. Let $u(t)$ be the amount of a radioactive element at time t and say initially, $u(0)=A>0$. The rate of decay is proportional to the amount present, so

$$
\frac{d u}{d t}=-c u
$$

where the constant $c>0$ determines the decay rate. The half-life T is the amount of time for half of the element to decay, so $u(T)=\frac{1}{2} u(0)$. Find c in terms of T and obtain a formula for $u(t)$ in terms of T.
3. Let $\int_{0}^{x} f(t) d t=e^{\cos (3 x)}+A$, where f is some continuous function. Find f and the constant A.
4. a) If $u^{\prime \prime}+4 u=0$ with initial conditions $u(0)=1$ and $u^{\prime}(0)=-2$, compute $u(t)$.
b) Find a particular solution of the inhomogeneous equation $u^{\prime \prime}+4 u=8$.
c) Find a particular solution of the inhomogeneous equation $u^{\prime \prime}+4 u=-4 t$.
d) Find a particular solution of the inhomogeneous equation $u^{\prime \prime}+4 u=-8-8 t$.
e) Find the most general solution of the inhomogeneous equation $u^{\prime \prime}+4 u=8-8 t$.
f) If $f(t)$ is any continuous function, use the method "variation of parameters" (look it up if you don't know it) to find a formula for a particular solution of $u^{\prime \prime}+4 u=f(t)$.
5. Let $u(t)$ be any solution of $u^{\prime \prime}+2 b u^{\prime}+4 u=0$. If $b>0$ is a constant, show that $\lim _{t \rightarrow \infty} u(t)=0$.
6. a) If $u^{\prime \prime}-4 u=0$ with initial conditions $u(0)=1$ and $u^{\prime}(0)=-2$, compute $u(t)$.
b) Find a particular solution of the inhomogeneous equation $u^{\prime \prime}-4 u=8$.
c) Find a particular solution of the inhomogeneous equation $u^{\prime \prime}-4 u=-4 t$.
d) Find a particular solution of the inhomogeneous equation $u^{\prime \prime}-4 u=-8-8 t$.
e) Find the most general solution of the inhomogeneous equation $u^{\prime \prime}-4 u=8-8 t$.
f) If $f(t)$ is any continuous function, use the method "variation of parameters" (look it up if you don't know it) to find a formula for a particular solution of $u^{\prime \prime}-4 u=f(t)$.
7. Say $w(t)$ satisfies the differential equation

$$
\begin{equation*}
a w^{\prime \prime}(t)+b w^{\prime}+c w(t)=0 \tag{1}
\end{equation*}
$$

where a and c, are positive constants and $b \geq 0$. Let $E(t)=\frac{1}{2}\left[a w^{\prime 2}+c w^{2}\right]$.
a) Without solving the differential equation, show that $E^{\prime}(t) \leq 0$.
b) Use this to show that If you also know that $w(0)=0$ and $w^{\prime}(0)=0$, then $w(t)=0$ for all $t \geq 0$.
c) [Uniqueness] Say the functions $u(t)$ and $v(t)$ both satisfy the same equation (1) and also $u(0)=v(0)$ and $u^{\prime}(0)=v^{\prime}(0)$. Show that $u(t)=v(t)$ for all $t \geq 0$.
8. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t}=2$ for all points $(x, t) \in \mathbb{R}^{2}$.
a) Find some function $u(x, t)$ with this property..
b) Find the most general such function $u(x, t)$.
c) If $u(x, 0)=\sin 3 x$, find $u(x, t)$.
d) If instead u satisfies $\frac{\partial u}{\partial t}=2 x t$, still with $u(x, 0)=\sin 3 x$, find $u(x, t)$.
9. Say $u(x, t)$ has the property that $\frac{\partial u}{\partial t}=3 u$ for all points $(x, t) \in \mathbb{R}^{2}$.
a) Find some such function - other than the trivial $u(x, t) \equiv 0$.
b) Find the most general such function.
c) If $u(x, t)$ also satisfies the initial condition $u(x, 0)=\sin 3 x$, find $u(x, t)$.
10. a) If $u(x, t)=\cos (x-3 t)+2(x-3 t)^{7}$, show that $3 u_{x}+u_{t}=0$.
b) If $f(s)$ is any smooth function of s and $u(x, t)=f(x-3 t)$, show that $3 u_{x}+u_{t}=0$.
11. A function $u(x, y)$ satisfies $3 u_{x}+u_{t}=f(x, t)$, where f is some specified function.
a) Find an invertible linear change of variables

$$
\begin{aligned}
& r=a x+b t \\
& s=c x+d t,
\end{aligned}
$$

where a, b, c, d are constants, so that in the new (r, s) variables u satisfies $\frac{\partial u}{\partial s}=$ $g(r, s)$, where g is related to f by the change of variables. [Remark: There are many possible such changes of variable. The point is to reduce the differential operator $3 u_{x}+u_{t}$ to the much simpler u_{s}.]
b) Use this procedure to solve

$$
3 u_{x}+u_{t}=1+x+2 t \quad \text { with } \quad u(x, 0)=e^{x} .
$$

12. Let S and T be linear spaces, such as \mathbb{R}^{3} and \mathbb{R}^{7} and $L: S \rightarrow T$ be a linear map; thus, for any vectors X, Y in S and any scalar c

$$
L(X+Y)=L X+L Y \quad \text { and } \quad L(c X)=c L(x)
$$

Say V_{1} and V_{2} are (distinct!) solutions of the equation $L X=Y_{1}$ while W is a solution of $L X=Y_{2}$. Answer the following in terms of V_{1}, V_{2}, and W.
a) Find some solution of $L X=2 Y_{1}-7 Y_{2}$.
b) Find another solution (other than W) of $L X=Y_{2}$.
13. The following is a table of inner ("dot") products of vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}.

	\mathbf{u}	\mathbf{v}	\mathbf{w}
\mathbf{u}	4	0	8
\mathbf{v}	0	1	3
\mathbf{w}	8	3	50

For example, $\mathbf{v} \cdot \mathbf{w}=\mathbf{w} \cdot \mathbf{v}=3$.
a) Find a unit vector in the same direction as \mathbf{u}.
b) Compute $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$.
c) Compute $\|\mathbf{v}+\mathbf{w}\|$.
d) Find the orthogonal projection of \mathbf{w} into the plane E spanned by \mathbf{u} and \mathbf{v}. [Express your solution as linear combinations of \mathbf{u} and \mathbf{v}.]
e) Find a unit vector orthogonal to the plane E.
f) Find an orthonormal basis of the three dimensional space spanned by \mathbf{u}, \mathbf{v}, and \mathbf{w}.
14. Let z and w be complex numbers.
a) Write the complex number $z=\frac{1}{3+4 i}$ in the form $z=a+i b$ where a and b are real numbers.
b) Show that $\overline{(z w)}=\bar{z} \bar{w}$.
c) Show that $|z|^{2}=z \bar{z}$.
d) show that $|z w|=|z \| w|$.
15. If $z=x+i y$ is a complex number, one way to define e^{z} is by the power series

$$
\begin{equation*}
e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots+\frac{z^{k}}{k!}+\cdots=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} . \tag{2}
\end{equation*}
$$

a) Using the usual (real) power series for $\cos y$ and $\sin y$, show that

$$
e^{i y}=\cos y+i \sin y .
$$

b) Use this to show that $\cos y=\frac{e^{i y}+e^{-i y}}{2} \quad$ and $\quad \sin y=\frac{e^{i y}-e^{-i y}}{2 i}$.
c) Using equation (2), one can show that $e^{z+w}=e^{z} e^{w}$ for any complex numbers z and w (accept this for now). Consequently

$$
e^{i(x+y)}=e^{i x} e^{i y}
$$

Use the result of part (a) to show that this implies the usual formulas for $\cos (x+y)$ and $\sin (x+y)$.

