Math 4250 problem set 1, Spring 2024

Part 1. From Strauss, Partial Differential Equations, Chapter 1.

- Exercise 1.1, \#9
- Exercise 1.2, \#2, \#9

Warning: Exercises in Strauss are at the end of each section. Unfortunately these end-of-section exercises are not clearly labeled with section numbers. So please be careful in identifying these exercises. For instance exercise 1.1 are on pages $5-6$, exercises 1.2 are on pages $9-10$. This warning will not be repeated in other problem sets.

Part 2.

1. Find the general solution of $u_{x y}=x^{2} y$ for the function $u(x, y)$ on \mathbb{R}^{2}.
2. Find the general solution for $y u_{x y}+2 u_{x}=x$ for the function $u(x, y)$ on \mathbb{R}^{2}. (Hint: first integrate with respect to x.)
3. Let $\mathcal{D} \subset \mathbb{R}^{2}$ be a bounded (connected) region with smooth boundary \mathcal{B}. If $u(x, y)$ is a "smooth" function, write $\Delta u=u_{x x}+u_{y y}$ (we call Δ the Laplace operator). Some people write $\Delta u=\nabla^{2} u$. Here we have used the standard notion for partial derivatives. For instance $u_{x x}=\frac{\partial^{2} u}{\partial x^{2}}$, and in the next problem $u_{t}=\frac{\partial u}{\partial t}$.

Suggestion: First do this problem for a function of one variable, $u(x)$, so $\Delta u=u^{\prime \prime}$ and, say, \mathcal{D} is the interval $\{0<x<1\}$.
a) Show that $u \Delta u=\nabla \cdot(u \nabla u)-|\nabla u|^{2}$.
b) If $u(x, y)=0$ on \mathcal{B}. Show that

$$
\iint_{\mathcal{D}} u \Delta u d x d y=-\iint_{\mathcal{D}}|\nabla u|^{2} d x d y
$$

[Hint: You may want to use the divergence theorem the theorem on the plane, which is equivalent to Green's theorem.]
c) If $\Delta u=0$ in \mathcal{D} and $u=0$ on the boundary \mathcal{B}, show that $u(x, y)=0$ throughout \mathcal{D}.
4. (extra credit) The temperature $u(x, t)$ of a certain thin rod, $0 \leq x \leq L$ satisfies the heat equation

$$
\begin{equation*}
u_{t}=u_{x x} \tag{1}
\end{equation*}
$$

Assume the initial temperature $u(x, 0)=0$ and that both ends of the rod are kept at a temperature of 0 , so $u(0, t)=u(L, t)=0$ for all $t \geq 0$. What do you anticipate the temperature in the rod will be at any later time t ?

I hope you suspect that $u(x, t)=0$ for all $t \geq 0$. Use the following to prove this. Let

$$
H(t)=\int_{0}^{L} u^{2}(x, t) d x
$$

a) Show that since the temperature on the ends of the rod is always zero, then $d H / d t \leq 0$ (an integration by parts will be needed). Thus, for any $t \geq 0$ we know that $H(t) \leq H(0)$.
b) Since the initial temperature is zero, what is $H(0)$? Why does this imply that $H(t)=0$ for all $t \geq 0$? Why does this imply that $u(x, t)=0$ for all points on the rod and all $t \geq 0$?

Uniqueness Say that the functionns $u(x, t)$ and $v(x, t)$ both satisfy the heat equation (1) and have the identical initial values and boundary values:

$$
u(x, 0)=v(x, 0) \text { for } 0 \leq x \leq L, \quad u(x, t)=v(x, t) \text { for } x=0 \text { and } x=L, t \geq 0
$$

Show that $u(x, t)=v(x, t)$ for all $0 \leq x \leq L, t \geq 0$.
5. (extra credit) [Generalization of Problem B to more space dimensions]. Say a function $u(x, y, t)$ satisfies the heat equation in a bounded region $\Omega \in \mathbb{R}^{2}$:

$$
\begin{equation*}
u_{t}=u_{x x}+u_{y y} \tag{2}
\end{equation*}
$$

and that $u(x, y, t)=0$ for all points (x, y) on the boundary, \mathcal{B} of Ω. Similar to Problem 17, define

$$
H(t)=\iint_{\Omega} u^{2}(x, y, t) d x d y
$$

a) Show that $d H / d t \leq 0$. [Suggestion: See Problem 16.]
b) If in addition you know that the initial temperature is zero, $u(x, y, 0)=0$ for all points $(x, y) \in \Omega$, show that $u(x, y, t)=0$ for all $(x, y) \in \Omega$ and all $t \geq 0$.
c) [Uniqueness] Say that the functionns $u(x, y, t)$ and $v(x, y, t)$ both satisfy the heat equation (2) and have the identical initial values and boundary values:

$$
u(x, y, 0)=v(x, y, 0) \text { for }(x, y) \in \Omega, \quad u(x, y, t)=v(x, y, t) \text { for }(x, y) \text { on } \mathcal{B}, \text { and } t \geq 0
$$

Show that $u(x, y, t)=v(x, y, t)$ for all $(x, y) \in \Omega t \geq 0$.

