Math 4250 Problem Set 10, Spring 2024

Part 1. From Strauss, Partial Differential Equations.

- Exercise 10.2, \#1, page 270. (Note on typo: should be "initial conditions (25)")
- Exercise 10.2, \#2, \#5, page 270

Part 2.

1. Show that

$$
\int x^{2} J_{0}(x) d x=x^{2} J_{1}(x)+x J_{0}(x)-\int J_{0}(x) d x
$$

and

$$
\int_{0}^{1} x J_{0}(\alpha x) d x=\frac{1}{\alpha} J_{1}(\alpha) .
$$

2. Suppose that α is a root of the equation $J_{0}(x)=0$. Show that

$$
\int_{0}^{\alpha} J_{1}(x) d x=1
$$

3. Let $I_{0}(x)$ be the function $I_{0}(x):=J_{0}(\sqrt{-1} x)$.
(i) Show that $I_{0}(x)$ is a solution of the differential equation

$$
\frac{d}{d x}\left(x \frac{d y}{d x}\right)-x y=0
$$

(ii) Consider the function $u(x)=\sqrt{x} I_{0}(x)$ on $(0, \infty)$. Show that $u(x)$ satisfies the differential equation

$$
\frac{d^{2} u}{d x^{2}}=\left(1-\frac{1}{4 x^{2}}\right) u
$$

(iii) (extra credit) Show that

$$
\lim _{x \rightarrow \infty} I_{0}(x)=\infty
$$

Note that (ii) and (iii) suggest that $u(x) \sim A e^{x}$ for some constant $A>0$ as $x \rightarrow \infty$.
(iv) (extra credit) Let $v(x):=e^{-x} u(x)$. Show that $v(x)$ satisfies the differential equation

$$
\frac{d^{2} v}{d x^{2}}+2 \frac{d v}{d x}+\frac{v}{4 x^{2}}=0
$$

and use this equation to obtain an asymptotic expansion of $v(x)$ in powers of $\frac{1}{x}$, assuming that $\lim _{x \rightarrow \infty} v(x)=A$ for some positive constant A.
6. (extra credit) Let $u(x)$ and $v(x)$ be solutions of ordinary differential equations

$$
u^{\prime \prime}+a(x) u=0, \quad v^{\prime \prime}+b(x) v=0,
$$

on $(0, \infty)$, where $a(x)$ and $b(x)$ are continuous functions on $(0, \infty)$.
(a) Show that

$$
\int_{\alpha}^{\beta}(b-a) u v d x=\left.\left(v u^{\prime}-u v^{\prime}\right)\right|_{\alpha} ^{\beta}
$$

for any $0<\alpha<\beta$.
(b) Suppose that α and β are consecutive zeroes of u and that $u(x)>0$ in the interval $\alpha<x<\beta$. If $a(x) \leq b(x)$ in this interval, show that $v(x)$ must be zero somewhere in this interval by using that $u^{\prime}(\alpha)>0$ and $u^{\prime}(\beta)<0$ and there is a contradiction unless v is zero somewhere in this interval. This is the Sturm oscillation theorem.
(c) In the special case where $a(x)=b(x)$ and $u(x)$ and $v(x)$ are linearly independent solutions of the same equation, conclude that between any two zeroes of u there is a zero of v, and vice versa. Thus the zeroes of u and the zeros of v interlace. A special case of this is the interlacing of the zeroes of $\sin x$ and $\cos x$.
(d) Suppose that $b(x) \geq c^{2}>0$ for some constant c. Show that $v(x)$ must have infinitely many zeroes by comparing v with a collation of $u^{\prime \prime}+c^{2} u=0$.
(e) Show that every solution of $v^{\prime \prime}+\left(1-\frac{1}{x^{2}} v=0\right.$ must have infinitely many zeroes.

