Math 4250 Problem Set 2, Spring 2024

Part 1. From Strauss, Partial Differential Equations, Chapter 1.

- Exercise 1.2, \#10, page 10
- Exercise 1.3, \#6, page 19. [For the Laplacian in polar coordinates, see page 157 equation (5). Here you are seeking a solution that does not depend on the angle variable θ.]
- Exercise 1.5, \#3, page 27
- Exercise 2.1, \#2, page 38
- Exercise 2.1, \#7, page 38

Part 2.

1. Let $u(x, y)$ be a smooth function on \mathbb{R}^{2} such that

$$
\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}=0 .
$$

Show that $\frac{\partial u}{\partial x}-\frac{\partial u}{\partial y}$ is constant on the line $\{x-y=c\}$ for every $c \in \mathbb{R}$, and $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}$ is constant on the line $\{x+y=b\}$ for every $b \in \mathbb{R}$.
2. Find a solution $u(x, t)$ on the half plane $\left\{(x, t) \in \mathbb{R}^{2}: t \geq 2\right\}$ of the PDE

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial t}-6 \frac{\partial^{2} u}{\partial t^{2}}=0
$$

subject to the initial conditions $u(x, 0)=\phi(x), \frac{\partial u}{\partial t}(x, 0)=\psi(x)$.
3. (Extra credit) Strauss, Exercise 1.3, \#10, page 20.
4. (Extra credit) Strauss, Exercise 2.2, \#6, page 41.

