Math 4250 Problem Set 3, Spring 2024

Part 1. From Strauss, Partial Differential Equations, Chapter 1.

- Exercise 2.2, \#4, page 41
- Exercise 2.3, \#1, \#2, page 45
- Exercise 2.3, \#6, page 46
- Exercise 2.4, \#4, page 52
- Exercise 2.4, \#11, page 53

Part 2.

1. (extra credit) Exercise 2.4, \#16, page 54
2. (extra credit) This problem is about the asymptotic expansion of the complementary error function $\operatorname{Erfc}(x):=1-\operatorname{Erf}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t$ as $x \rightarrow \infty$.
(a) Show that $\int_{x}^{\infty} e^{-t^{2}} d t=\frac{e^{-x^{2}}}{2 x}-\int_{x}^{\infty} \frac{e^{-t^{2}}}{2 t^{2}} d t$.
(Hint: integrate by parts)
(b) Show that $\int_{x}^{\infty} e^{-t^{2}} d t \leq \frac{e^{-x^{2}}}{2 x}$ for all $x>0$. (Hint: $-t^{2} \leq-x^{2}-2 x(t-x)$ for all $t \geq x$.)
(c) Show that for every integer $n \geq 1$, we have

$$
\int_{x}^{\infty} e^{-t^{2}} d t=e^{-x^{2}} \cdot\left[\frac{1}{2 x}-\frac{1}{2^{2} x^{3}}+\frac{1 \cdot 3}{2^{3} x^{5}}-\frac{1 \cdot 3 \cdot 5}{2^{4} x^{7}}+\cdots+(-1)^{n-1} \frac{1 \cdot 3 \cdots(2 n-3)}{2^{n} x^{2 n-1}}\right]+R_{n}(x),
$$

where

$$
R_{n}(x)=(-1)^{n} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n}} \int_{x}^{\infty} t^{-2 n} e^{-t^{2}} d t
$$

Note that when $n=1$, the product $\prod_{i=1}^{n-1}(2 i-1)$ above is understood to be 1 .
(d) Show that $\int_{x}^{\infty} t^{-2 n} e^{-t^{2}} d t \leq \frac{e^{-x^{2}}}{2 x^{2 n+1}}$, for all integer $n \geq 0$ and all $x>0$. In particular $\left|R_{n}(x)\right| \leq \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n+1} x^{2 n+1}} e^{-x^{2}}$, for all $x>0$.
(e) Show that the infinite series

$$
\sum_{m \geq 1}(-1)^{m-1} e^{-x^{2}} \frac{\prod_{i=1}^{m-1}(2 i-1)}{2^{m} x^{2 m-1}}
$$

diverges for every $x \neq 0$.
(f) The statements (c) and (d) says that for every positive integer n, the finite series $S_{n}(x):=\sum_{m=1}^{n} e^{-x^{2}} \frac{\prod_{i=1}^{m-1}(2 i-1)}{2^{n} x^{n-1}}$ is a good approximation of $\int_{x}^{\infty} e^{-t^{2}} d t$ up to an error $R_{n}(x)=O\left(x^{-2 n-1}\right)$ for $x \gg 0$. On the other hand, the statement (e) says that the $\lim _{n \rightarrow \infty} S_{n}(x)$ does not exist, for every $x \neq 0$. Explain why these two statements do not contradict each other.

