MATH 4250 PROBLEM SET 3, SPRING 2024

Part 1. From Strauss, Partial Differential Equations, Chapter 1.

- Exercise 2.2, #4, page 41
- Exercise 2.3, #1, #2, page 45
- Exercise 2.3, #6, page 46
- Exercise 2.4, #4, page 52
- Exercise 2.4, #11, page 53

Part 2.

1. (extra credit) Exercise 2.4, #16, page 54

2. (extra credit) This problem is about the asymptotic expansion of the complementary error function $\operatorname{Erfc}(x) := 1 - \operatorname{Erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt$ as $x \to \infty$.

- (a) Show that $\int_x^{\infty} e^{-t^2} dt = \frac{e^{-x^2}}{2x} \int_x^{\infty} \frac{e^{-t^2}}{2t^2} dt$. (Hint: integrate by parts)
- (b) Show that $\int_x^\infty e^{-t^2} dt \le \frac{e^{-x^2}}{2x}$ for all x > 0. (Hint: $-t^2 \le -x^2 - 2x(t-x)$ for all $t \ge x$.)
- (c) Show that for every integer $n \ge 1$, we have

$$\int_{x}^{\infty} e^{-t^{2}} dt = e^{-x^{2}} \cdot \left[\frac{1}{2x} - \frac{1}{2^{2}x^{3}} + \frac{1 \cdot 3}{2^{3}x^{5}} - \frac{1 \cdot 3 \cdot 5}{2^{4}x^{7}} + \dots + (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^{n}x^{2n-1}} \right] + R_{n}(x),$$

where

$$R_n(x) = (-1)^n \frac{1 \cdot 3 \cdots (2n-1)}{2^n} \int_x^\infty t^{-2n} e^{-t^2} dt$$

Note that when n = 1, the product $\prod_{i=1}^{n-1} (2i - 1)$ above is understood to be 1.

- (d) Show that $\int_x^\infty t^{-2n} e^{-t^2} dt \le \frac{e^{-x^2}}{2x^{2n+1}}$, for all integer $n \ge 0$ and all x > 0. In particular $|R_n(x)| \le \frac{1\cdot 3 \cdots (2n-1)}{2^{n+1} x^{2n+1}} e^{-x^2}$, for all x > 0.
- (e) Show that the infinite series

$$\sum_{m \ge 1} (-1)^{m-1} e^{-x^2} \frac{\prod_{i=1}^{m-1} (2i-1)}{2^m x^{2m-1}}$$

diverges for every $x \neq 0$.

(f) The statements (c) and (d) says that for every positive integer n, the finite series $S_n(x) := \sum_{m=1}^n e^{-x^2} \frac{\prod_{i=1}^{m-1}(2i-1)}{2^n x^{n-1}}$ is a good approximation of $\int_x^\infty e^{-t^2} dt$ up to an error $R_n(x) = O(x^{-2n-1})$ for $x \gg 0$. On the other hand, the statement (e) says that the $\lim_{n\to\infty} S_n(x)$ does not exist, for every $x \neq 0$. Explain why these two statements do not contradict each other.