Math 4250 Problem Set 4, Spring 2024

Part 1. From Strauss, Partial Differential Equations, Chapter 1.

- Exercise 2.5, \#4, page 56
- Exercise 3.1, \#1, \#4, page 60
- Exercise 3.2, \#3, \#10 page 66

Part 2.

1. Let C be the circle of radius 1 and let $u(\theta, t)$ be the temperature at a point $e^{\sqrt{-1} \theta}$ at time t. Thus we need that $u(\theta+2 \pi)=u(\theta)$. Suppose that $u(\theta, t)$ satisfies the heat equation $u_{t}=u_{\theta \theta}$. Let

$$
E(t)=\frac{1}{2} \int_{-\pi}^{\pi} u^{2}(\theta, t) d \theta
$$

(a) Show that $E^{\prime}(t) \leq 0$.
(b) Suppose that the initial temperature $u(\theta, 0)=0$ for all θ. Show that $u(\theta, t)=0$ for all $t \geq 0$ and all θ.
2. Suppose that a function $u(t)$ satisfies the differential equation

$$
\begin{equation*}
u^{\prime \prime}+b(t) u^{\prime}+c(t) u=0 \tag{1}
\end{equation*}
$$

on the interval $[0, A]$ and that the coefficients $b(t)$ and $c(t)$ are both continuous on $[0, A]$, so that $b(t)$ and $c(t)$ are bounded on $[0, A]$. Say $|b(t)| \leq M$ and $|c(t)| \leq M$. Define a function $E(t)$ on $[0, A]$ by

$$
E(t):=\frac{1}{2}\left(u^{\prime 2}+u^{2}\right) .
$$

(a) Show that for there exists a positive constant γ (depending on M) such that $E^{\prime}(t) \leq$ $\gamma E(t)$ for all $t \in[0, A]$.
[SUGGESTION: use the simple inequality $2 x y \leq x^{2}+y^{2}$.]
(b) Show that $E(t) \leq e^{\gamma t} E(0)$ for all $t \in[0, A]$. [Hint: First use the previous part to show that $\left.\left(e^{-\gamma t} E(t)\right)^{\prime} \leq 0\right]$.
(c) Show that if $u(0)=0$ and $u^{\prime}(0)=0$, then $E(t)=0$ and hence $u(t)=0$ for all $t \in[0, A]$. In other words, if $u^{\prime \prime}+b(t) u^{\prime}+c(t) u=0$ on the interval $[0, A]$ and that the functions $b(t)$ and $c(t)$ are continuous, and if $u(0)=0=u^{\prime}(0)$, then $u(t)=0$ for all $t \in[0, A]$.
(d) Use (c) to prove the uniqueness theorem: if $v(t)$ and $w(t)$ both satisfy equation

$$
\begin{equation*}
u^{\prime \prime}+b(t) u^{\prime}+c(t) u=f(t) \tag{2}
\end{equation*}
$$

and have the same initial conditions, $v(0)=w(0)$ and $v^{\prime}(0)=w^{\prime}(0)$, then $v(t)=w(t)$ for all $t \in[0, A]$.
(e) Assume the coefficients $b(t), c(t)$, and $f(t)$ in equation (2) are periodic with period P, that is, $b(t+P)=b(t)$ etc. for all real t. If $\phi(t)$ is a solution of equation (2) that satisfies the periodic boundary conditions

$$
\begin{equation*}
\phi(P)=\phi(0) \quad \text { and } \quad \phi^{\prime}(P)=\phi^{\prime}(0) \tag{3}
\end{equation*}
$$

show that $\phi(t)$ is periodic with period $P: \phi(t+P)=\phi(t)$ for all $t \geq 0$. Thus, the periodic boundary conditions (3) do imply the desired periodicity of the solution
(f) (extra credit) If we assume, instead of the continuity of $b(t)$ and $c(t)$, only that both $b(t)$ and $c(t)$ are bounded on $[0, A]$. Do the statements (a)-(e) above still hold? (Either give a proof, or a counter-example.)
3. Let $u(x, t)$ be the temperature at time t at the point $x,-L \leq x \leq L$, where L is a positive real number. Assume $u(x, t)$ is twice differentiable and satisfies the heat equation $u_{t}=u_{x x}$ for $0<t<\infty$ with the boundary condition $u(-L, t)=u(L, t)=0$ and initial condition $u(x, 0)=f(x)$ for a function $f(x)$ on $[-L, L]$.
(a) Show that $E(t):=\frac{1}{2} \int_{-L}^{L} u^{2}(x, t) d x$ is a decreasing function of t.
(b) Use this to prove uniqueness for the heat equation with these specified initial and boundary conditions $u(-L, t)=f(t), u(L, t)=g(t)$.
(c) Suppose that $u(x, 0)=\varphi(x)$ is an even function of x, and $u(-L, t)=u(L, t)$ for all $t \geq 0$. Show that the temperature $u(x, t)$ at later times is also an even function of x.

