## Math 4250 Problem Set 5, Spring 2024

Part 0. Read pages 92-98 of Strauss on Robin's boundary condition.
Part 1. From Strauss, Partial Differential Equations.

- Exercise 3.2., \#10 page 10. Solve this problem in two different ways.
(a) Using the method in Strauss, section 3.2.
(b) Use the method of separation of variable and Fourier series expansion.
- Exercise 3.3, \#2, page 71
- Exercise 3.4, \#2, \#4, \#11, pp. 79-80
- Exercise 4.1, \#1, \#4 , page 89
- Exercise 4.2, \#2, page 92
- (extra credit) Exercise 4.3, \#8, page 101

Part 2.

1. Use Duhamel's principle (page 78 of Strauss) to find a formula for a particular solution of the ODE $u^{\prime \prime}(x)+a^{2} u(x)=f(x)$, where $a>0$ is a positive real number.
2. Solve the following variant of the heat equation

$$
\left(\frac{\partial}{\partial t}-k \frac{\partial^{2}}{\partial x^{2}}+b t^{2}\right) u(x, t)=0
$$

for a function $u(x, t)$ on the domain $\left\{(x, t) \in \mathbb{R}^{2}: x \in \mathbb{R}, t>0\right\}$, which satisfies the initial condition $\lim _{t \rightarrow 0^{+}} u(x, t)=f(x)$ for a given function $f(x)$ on the real line, where $k, b>0$ are positive constants.
[Hint: The solutions of the related ODE $w^{\prime}(t)+b t^{2} w(t)=0$ are $c e^{-b t^{3} / 3}$. So try making the change of variables $u(x, t)=e^{-b t^{3} / 3} v(x, t)$, derive a equation for $v(x, t)$ and solve that equation for $v(x, t)$.]
3. (extra credit) Let $u_{1}(x), u_{2}(x)$ be smooth function on a finite interval $[a, b]$ which satisfies two second order linear ODE's

$$
\left(a(x) u_{i}^{\prime}(x)\right)^{\prime}+b(x) u_{i}(x)=\lambda_{i} u_{i}(x), \quad i=1,2
$$

where $a(x), b(x)$ are smooth functions on $[a, b]$, and $\lambda_{1}, \lambda_{2}$ are real constants.
(a) Suppose that $u_{1}(x), u_{2}(x)$ both satisfy the homogeneous Dirichlet boundary conditions $u_{i}(a)=0=u_{i}(b)$ for $i=1,2$. Show that

$$
\int_{a}^{b} u_{1}(x) u_{2}(x) d x=0
$$

(b) Find other boundary conditions so that the statement in (a) hold for any two solutions satisfying the boundary conditions you specify.

