## Math 4250 Problem Set 7, Spring 2024

Part 1. From Strauss, Partial Differential Equations.

- Exercise 5.5, \#2, page 145
- Exercise 6.1, \#6, \#7, \#10, pages 160-161
- Exercise 6.1 (extra credit), \#11, page 161
- Exercise 6.2, \#3, page 165
- Exercise 6.3, \#3, page 172

Part 2.

1. (extra credit) Let $f(x)$ be a continuous $\mathbb{Z}$-periodic $\mathbb{C}$-valued function on $\mathbb{R}$. Let

$$
c_{n}=c_{n}(f)=\int_{0}^{1} f(x) e^{-2 \pi \sqrt{-1} n x} d x
$$

be the Fourier coefficients of $f$. Assume that $\sum_{n \in \mathbb{Z}}\left|c_{n}\right|$ converges.
(a) Show that the infinite series $F(x):=\sum_{n \in \mathbb{Z}} c_{n} e^{2 \pi \sqrt{-1} n x}$ converges for every $x$.
(b) Show that the function $F(x)$ defined by the convergent infinite series in (a) is continuous and $\mathbb{Z}$-periodic.
(c) Show that $F(x)$ has the same Fourier coefficients as $f(x)$.
(d) Conclude from the completeness of the family $\left(e^{2 \pi \sqrt{-1} n x}\right)_{n \in \mathbb{Z}}$ in $C([0,1])$ proved in class that $f(x)=F(x)$ for all $x \in \mathbb{R}$.
2. Suppose that $u(x)$ is a twice differentiable function on $\mathbb{R}$ which satisfies the ordinary differential equation

$$
u^{\prime \prime}+b(x) u^{\prime}-c(x) u=0
$$

where $b(x)$ and $c(x)$ are continuous functions on $\mathbb{R}$ with $c(x)>0$ for every $x \in(0,1)$.
(a) Show that $u$ cannot have a positive local maximum in the open interval $(0,1)$, that is, have a local maximum at a point $p$ where $u(p)>0$. Also show that $u$ cannot have a negative local minimum in $(0,1)$.
(b) If $u(0)=u(1)=0$, prove that $u(x)=0$ for every $x \in[0,1]$.
(c) Give an explicit example of a function $u_{1}(x)$ which satisfies an ODE

$$
u^{\prime \prime}+b_{1}(x) u^{\prime}-c_{1}(x) u=0
$$

where $b_{1}, c_{1}$ are continuous functions on $\mathbb{R}$, and $u_{1}(x)$ does have a local maximum at a point $q \in(0,1)$ with $u_{1}(q)>0$.
3. Let $u(x, y)$ be a twice continuously differentiable function on an open domain $\mathcal{D}$ in $\mathbb{R}^{2}$. Suppose that $u$ satisfies the differential equation

$$
4 u_{x x}+3 u_{y y}-5 u=0
$$

in $\mathcal{D}$. Show that $u$ cannot have a local positive maximum at a point of $\mathcal{D}$, i.e. a local maximum $p \in \mathcal{D}$ with $u(p)>0$. Also show that $u$ cannot have a local negative minimum at a point of $\mathcal{D}$.
4. Let $u(x, y)$ be a twice continuously differentiable function on a bounded open domain $\mathcal{D}$ of $\mathbb{R}^{2}$. Suppose that $u$ satisfies the differential equation

$$
4 u_{x x}-2 u_{x y}+3 u_{y y}+7 u_{x}+u_{y}-5 u=0 .
$$

in $\mathcal{D}$.
(a) (extra credit) Show that $u$ cannot have a local positive maximum at a point of $\mathcal{D}$, i.e. a local maximum $p \in \mathcal{D}$ with $u(p)>0$. Also show that $u$ cannot have a local negative minimum at a point of $\mathcal{D}$.
[Hint: If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are positive semi-definite symmetric $n \times n$ matrices, then $\sum_{i, j=1}^{n} a_{i j} b_{i j} \geq 0$.]
(b) Suppose that $u(x, y)$ extends to a continuous function on the closure of $\mathcal{D}$ and that $u$ vanishes on the boundary $\partial \mathcal{D}$ of $\mathcal{D}$ of $\mathcal{D}$. Show that $u$ is identically 0 on $\mathcal{D}$.

