Math 4250 Problem Set 8, Spring 2024

Part 1. From Strauss, Partial Differential Equations.

- Exercise 9.1, \#1, \#2, \#3, page 233
- Exercise 9.2, \#5, \#11, pages 240-241

Part 2.

1. Let A be a symmetric positive definite $n \times n$ real matrix, i.e. $(x \mid A x)>0$ for all nonzero elements $x \in \mathbb{R}^{n}$. Consider the quadratic polynomial

$$
Q(x):=\frac{1}{2}(x \mid A x)-(b \mid x) .
$$

(a) Show that Q is bounded below, that is, there is a constant m so that $Q(x) \geq m$ for all $x \in \mathbb{R}^{n}$.
(b) Suppose that $x_{0} \in \mathbb{R}^{n}$ minimizes Q; i.e. $(x \mid A x) \geq\left(x_{0} \mid A x_{0}\right)$. Show that $A x_{0}=b$.
(One approach: For any $y \in \mathbb{R}^{n}$, consider the function $Q\left(x_{0}+\epsilon y\right)$ in ϵ, which has a minimum at $\epsilon=0$. So the derivative with respect to ϵ vanishes at $\epsilon=0$.)
[Moral: One way to solve $A x=b$ is to minimize Q.]
2. Let $\Omega \in \mathbb{R}^{3}$ be a bounded region with smooth boundary and let $F(x)$ be a bounded continuous function on Ω. Also, let \mathcal{S} be the set of smooth functions $u(x)$ on Ω that are zero on the boundary, i.e. $u(x)=0$ for all $x \in \partial \Omega$. Define a function J on \mathcal{S} by

$$
J(u):=\int_{\Omega}\left[\frac{1}{2}|\nabla u|^{2}+F(x) u\right] d^{3} x .
$$

(Such a function J is sometimes called a "functional", a scaler-valued function on a space of functions.) Suppose that $u_{0}(x) \in \mathcal{S}$ minimizes J, i.e. $J(u) \geq J\left(u_{0}\right)$ for all $u \in \mathcal{S}$. Show that $\Delta u_{0}=F$ in $\Omega-$ and of course $u_{0}=0$ on $\partial \Omega$.
(Hint: For any smooth function v on an open subset of \mathbb{R}^{3} which contains the closure of Ω such that v vanishes on the boundary of Ω. For any real number ϵ, we have

$$
\int_{\Omega}\left[\frac{1}{2}|\nabla u+\epsilon \nabla v|^{2}+F(x)(u+\epsilon v)\right] d^{3} x \geq \int_{\Omega}\left[\frac{1}{2}|\nabla u|^{2} d^{3} x+F(x) u\right] d^{3} x
$$

Therefore the derivative with respect to ϵ of $\int_{\Omega}\left[\frac{1}{2}|\nabla u+\epsilon \nabla v|^{2}+F(x)(u+\epsilon v)\right] d^{3} x$ vanishes. Integrate by parts, to get an integral of the form

$$
\int_{\Omega}(\text { some function depending only on } u \text { and } F) \cdot v(x) d^{3} x=0
$$

for every function v satisfying the above condition.)
[Moral: One way to solve $\Delta u=F$ with $u=0$ on $\partial \Omega$ is to seek a function in \mathcal{S} that mimimizes $J(u)$. The functional J is said to be a variational problem for the differential equation $\Delta u=F$.]

Remark on notation for integrals. When integrating functions in dimensions between 1 and 3, people often use notations such as $\int f(x) d x, \iint f(x, y) d x d y$ and $\iiint f(x, y, z) d x d y d z$. However this notation scheme becomes unsustainable in higher dimensional situation. Instead one uses only one integral sign, and the integrals are written in the form $\int_{D} \alpha$, where D is the geometric body over which the integrand α is integrated. The integrand α usually are one of two forms: (a) $\alpha=f(x) \mu$, where μ is a "measure" (also called a "volume element" such as $d^{n} x$ when D is a bounded domain in \mathbb{R}^{n}, or (b) α is a "differential form", such as $f_{1} d x_{2} \wedge d x_{3}+f_{2} d x_{3} \wedge d x_{1}+f_{3} d x_{1} \wedge d x_{2}$. The integrals of type (a) are unsigned, while those of type (b) have signs. The integrals with signed allows cancellation to happen, and the fundamental theorem of calculus, in the form $\int_{\partial D} \alpha=\int_{D} d \alpha$, holds.
3. Define explicitly integrals over spheres in \mathbb{R}^{3}, especially the unit sphere S^{3} in \mathbb{R}^{4}, and compute the integral over S^{3} of the inner product of a smooth vector field \vec{F} on \mathbb{R}^{4} with components (x, y, z, w) with the outer normal of S^{3}. Then verify the divergence theorem by computing the divergence of \vec{F} Here x, y, z, w are the coordinates of \mathbb{R}^{4}.
(Motivation: The divergence theorem in dimension 4 is used on page 231 of Strauss. Strauss refers to A.1, but A. 1 does not really discuss divergence theorem in dimension 4 or higher. A good book in this aspect is the thin book "Calculus on Manifods" by Spivak.)

