
Math 4250 Problem Set 8, Spring 2024

Part 1. From Strauss, Partial Differential Equations.

• Exercise 9.1, #1, #2, #3, page 233

• Exercise 9.2, #5, #11, pages 240–241

Part 2.

1. Let A be a symmetric positive definite n× n real matrix, i.e. (x|Ax) > 0 for all nonzero
elements x ∈ Rn. Consider the quadratic polynomial

Q(x) := 1
2
(x|Ax)− (b|x).

(a) Show that Q is bounded below, that is, there is a constant m so that Q(x) ≥ m for all
x ∈ Rn.

(b) Suppose that x0 ∈ Rn minimizes Q; i.e. (x|Ax) ≥ (x0|Ax0). Show that Ax0 = b.

(One approach: For any y ∈ Rn, consider the function Q(x0 + εy) in ε, which has a
minimum at ε = 0. So the derivative with respect to ε vanishes at ε = 0.)

[Moral: One way to solve Ax = b is to minimize Q.]

2. Let Ω ∈ R3 be a bounded region with smooth boundary and let F (x) be a bounded
continuous function on Ω. Also, let S be the set of smooth functions u(x) on Ω that are zero
on the boundary, i.e. u(x) = 0 for all x ∈ ∂Ω. Define a function J on S by

J(u) :=

∫
Ω

[
1
2
|∇u|2 + F (x)u

]
d3x.

(Such a function J is sometimes called a “functional”, a scaler-valued function on a space of
functions.) Suppose that u0(x) ∈ S minimizes J , i.e. J(u) ≥ J(u0) for all u ∈ S. Show that
∆u0 = F in Ω – and of course u0 = 0 on ∂Ω.

(Hint: For any smooth function v on an open subset of R3 which contains the closure of Ω
such that v vanishes on the boundary of Ω. For any real number ε, we have∫

Ω

[
1
2
|∇u+ ε∇v|2 + F (x)(u+ εv)

]
d3x ≥

∫
Ω

[
1
2
|∇u|2d3x+ F (x)u

]
d3x

Therefore the derivative with respect to ε of
∫

Ω

[
1
2
|∇u+ ε∇v|2 + F (x)(u+ εv)

]
d3x vanishes.

Integrate by parts, to get an integral of the form∫
Ω

(some function depending only on u and F ) · v(x) d3x = 0,

for every function v satisfying the above condition.)

[Moral: One way to solve ∆u = F with u = 0 on ∂Ω is to seek a function in S that
mimimizes J(u). The functional J is said to be a variational problem for the differential
equation ∆u = F .]
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Remark on notation for integrals. When integrating functions in dimensions between 1 and
3, people often use notations such as

∫
f(x)dx,

∫∫
f(x, y)dx dy and

∫∫∫
f(x, y, z)dx dy dz.

However this notation scheme becomes unsustainable in higher dimensional situation. In-
stead one uses only one integral sign, and the integrals are written in the form

∫
D
α, where

D is the geometric body over which the integrand α is integrated. The integrand α usually
are one of two forms: (a) α = f(x)µ, where µ is a “measure” (also called a “volume element”
such as dnx when D is a bounded domain in Rn, or (b) α is a “differential form”, such as
f1 dx2 ∧ dx3 + f2 dx3 ∧ dx1 + f3 dx1 ∧ dx2. The integrals of type (a) are unsigned, while those
of type (b) have signs. The integrals with signed allows cancellation to happen, and the
fundamental theorem of calculus, in the form

∫
∂D
α =

∫
D
dα, holds.

3. Define explicitly integrals over spheres in R3, especially the unit sphere S3 in R4, and
compute the integral over S3 of the inner product of a smooth vector field ~F on R4 with
components (x, y, z, w) with the outer normal of S3. Then verify the divergence theorem by
computing the divergence of ~F Here x, y, z, w are the coordinates of R4.

(Motivation: The divergence theorem in dimension 4 is used on page 231 of Strauss. Strauss
refers to A.1, but A.1 does not really discuss divergence theorem in dimension 4 or higher.
A good book in this aspect is the thin book “Calculus on Manifods” by Spivak.)
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