MATH 4250 PROBLEM SET 8, SPRING 2024

Part 1. From Strauss, Partial Differential Equations.

- Exercise 9.1, #1, #2, #3, page 233
- Exercise 9.2, #5, #11, pages 240–241

Part 2.

1. Let A be a symmetric positive definite $n \times n$ real matrix, i.e. (x|Ax) > 0 for all nonzero elements $x \in \mathbb{R}^n$. Consider the quadratic polynomial

$$Q(x) := \frac{1}{2}(x|Ax) - (b|x).$$

- (a) Show that Q is bounded below, that is, there is a constant m so that $Q(x) \ge m$ for all $x \in \mathbb{R}^n$.
- (b) Suppose that $x_0 \in \mathbb{R}^n$ minimizes Q; i.e. $(x|Ax) \ge (x_0|Ax_0)$. Show that $Ax_0 = b$.

(One approach: For any $y \in \mathbb{R}^n$, consider the function $Q(x_0 + \epsilon y)$ in ϵ , which has a minimum at $\epsilon = 0$. So the derivative with respect to ϵ vanishes at $\epsilon = 0$.)

[Moral: One way to solve Ax = b is to minimize Q.]

2. Let $\Omega \in \mathbb{R}^3$ be a bounded region with smooth boundary and let F(x) be a bounded continuous function on Ω . Also, let \mathcal{S} be the set of smooth functions u(x) on Ω that are zero on the boundary, i.e. u(x) = 0 for all $x \in \partial \Omega$. Define a function J on \mathcal{S} by

$$J(u) := \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 + F(x)u \right] d^3x.$$

(Such a function J is sometimes called a "functional", a scaler-valued function on a space of functions.) Suppose that $u_0(x) \in S$ minimizes J, i.e. $J(u) \ge J(u_0)$ for all $u \in S$. Show that $\Delta u_0 = F$ in Ω – and of course $u_0 = 0$ on $\partial \Omega$.

(Hint: For any smooth function v on an open subset of \mathbb{R}^3 which contains the closure of Ω such that v vanishes on the boundary of Ω . For any real number ϵ , we have

$$\int_{\Omega} \left[\frac{1}{2} |\nabla u + \epsilon \nabla v|^2 + F(x)(u + \epsilon v) \right] d^3 x \ge \int_{\Omega} \left[\frac{1}{2} |\nabla u|^2 d^3 x + F(x)u \right] d^3 x$$

Therefore the derivative with respect to ϵ of $\int_{\Omega} \left[\frac{1}{2}|\nabla u + \epsilon \nabla v|^2 + F(x)(u + \epsilon v)\right] d^3x$ vanishes. Integrate by parts, to get an integral of the form

$$\int_{\Omega} (\text{some function depending only on } u \text{ and } F) \cdot v(x) d^3x = 0,$$

for every function v satisfying the above condition.)

[Moral: One way to solve $\Delta u = F$ with u = 0 on $\partial \Omega$ is to seek a function in S that minimizes J(u). The functional J is said to be a variational problem for the differential equation $\Delta u = F$.]

Remark on notation for integrals. When integrating functions in dimensions between 1 and 3, people often use notations such as $\int f(x)dx$, $\iint f(x,y)dx dy$ and $\iiint f(x,y,z)dx dy dz$. However this notation scheme becomes unsustainable in higher dimensional situation. Instead one uses only one integral sign, and the integrals are written in the form $\int_D \alpha$, where D is the geometric body over which the integrand α is integrated. The integrand α usually are one of two forms: (a) $\alpha = f(x)\mu$, where μ is a "measure" (also called a "volume element" such as $d^n x$ when D is a bounded domain in \mathbb{R}^n , or (b) α is a "differential form", such as $f_1 dx_2 \wedge dx_3 + f_2 dx_3 \wedge dx_1 + f_3 dx_1 \wedge dx_2$. The integrals of type (a) are *unsigned*, while those of type (b) have signs. The integrals with signed allows cancellation to happen, and the fundamental theorem of calculus, in the form $\int_{\partial D} \alpha = \int_D d\alpha$, holds.

3. Define explicitly integrals over spheres in \mathbb{R}^3 , especially the unit sphere S^3 in \mathbb{R}^4 , and compute the integral over S^3 of the inner product of a smooth vector field \vec{F} on \mathbb{R}^4 with components (x, y, z, w) with the outer normal of S^3 . Then verify the divergence theorem by computing the divergence of \vec{F} Here x, y, z, w are the coordinates of \mathbb{R}^4 .

(Motivation: The divergence theorem in dimension 4 is used on page 231 of Strauss. Strauss refers to A.1, but A.1 does not really discuss divergence theorem in dimension 4 or higher. A good book in this aspect is the thin book "Calculus on Manifods" by Spivak.)