Math 4250 Problem Set 9, Spring 2024

Part 1. From Strauss, Partial Differential Equations.

- Exercise 9.2, \#12, page 241.
- Exercise 10.1, \#2, \#3 page 264

Part 2. Read pages 266-269 of Strauss, on Bessel functions. The definition of Bessel functions J_{n} of integral order is given on page 267 of Strauss.
2.1 Show that $\frac{d}{d x} J_{0}(x)=-J_{1}(x)$.
2.2 Show that

$$
\frac{d}{d x}\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x)
$$

for all integers $n \geq 1$.
2.3 (extra credit) Show that

$$
e^{x\left(t-t^{-1}\right)}=J_{0}(x)+\sum_{n=1}^{\infty} J_{n}(x)\left[t^{n}+(-1)^{n} t^{-n}\right] \quad \forall t \neq 0
$$

(The function $e^{x\left(t-t^{-1}\right)}$ is called the generating function of Bessel functions of integer order. When expanded in powers of t, the coefficients of t^{n} and t^{-n} are $J_{n}(x)$ and $(-1)^{n} J_{n}(x)$ for all $n \geq 0$. You can think of it as an easy way to "remember" the power series expansion of the J_{n} 's.)

Part 3.

1. Let $u_{1}(\mathbf{x}, t), u_{2}(\mathbf{x}, t)$ be smooth functions on $\mathbb{R}^{3} \times \mathbb{R}$ which satisfy the wave equation. Here $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$. Let $\phi_{i}(\mathbf{x})=u_{i}(\mathbf{x}, 0), \psi_{i}(\mathbf{x})=\frac{\partial u}{\partial t}(\mathbf{x}, 0)$ for $i=1,2$. Suppose ϕ_{i}, ψ_{i} are functions of \mathbf{x}, i.e. there exists function f_{i}, g_{i} in one variable such that $\phi_{i}(\mathbf{x})=f_{i}(|x|)$, $\psi_{i}(\mathbf{x})=g_{i}(|x|), i=1,2$. Let $r_{0}>0$ be a positive number such that $f_{1}\left(r_{0}\right)=f_{2}\left(r_{0}\right)$ and $g_{1}\left(r_{0}\right)=g_{2}\left(r_{0}\right)$.
(a) Is it necessarily true that $u_{1}\left(\mathbf{0}, r_{0} / c\right)=u_{2}\left(\mathbf{0}, r_{0} / c\right)$?
(b) (extra credit) Either give a complete proof that the answer to (a) is affirmative, or give a counter-example to show that the answer to (a) is negative.
2. (extra credit) It is known that the surface area (in dimension $n-1$) of the unit sphere in \mathbb{R}^{n} is $2 \pi^{n / 2} / \Gamma\left(\frac{n}{2}\right):=A_{n}$, and the volume of the unit ball in \mathbb{R}^{n} is $A_{n} / n=\pi^{n / 2} / \Gamma\left(\frac{n}{2}+1\right)$. Here Γ is the Gamma function; see A. 5 of Strauss.

Denote by $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ the coordinate functions on \mathbb{R}^{n}. For any smooth function $u(\mathbf{x}, t)$ on $\mathbb{R}^{n} \times \mathbb{R}$, define the spherical mean function on $\mathbb{R}^{4} \times \mathbb{R}_{>0} \times \mathbb{R}$ attached to u, by

$$
I[u](\mathbf{x}, r, t)=\frac{1}{C_{n} r^{n-1}} \int_{|\mathbf{w}|=r} u(\mathbf{x}+\mathbf{w}, t) d S_{\mathbf{w}}=\frac{1}{C_{n}} \int_{\mid \mathbf{y}=1} u(\mathbf{x}+r \mathbf{y}) d S_{\mathbf{y}}
$$

where $d S_{\mathbf{w}}$ denotes the surface area element for the sphere $\left\{\mathbf{w} \in \mathbb{R}^{n}:|\mathbf{w}|=r\right\}$ of radius r in \mathbb{R}^{n}, and similarly for $d S_{\mathbf{y}}$.
(a) Show that

$$
\frac{\partial}{\partial r} I[u](\mathbf{x}, r, t)=\frac{1}{r^{n-1}} \int_{0}^{r} I[\Delta u](\mathbf{x}, \rho, t) \rho^{n-1} d \rho .
$$

(differentiate under the integral sign, then use the divergence theorem)
(b) Show that

$$
\frac{\partial}{\partial r}\left(r^{n-1} \frac{\partial}{\partial r} I[u]\right)(\mathbf{x}, r, t)=r^{n-1} I[\Delta u](\mathbf{x}, r, t)
$$

In other words,

$$
\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{n-1}{r} \frac{\partial}{\partial r}\right) I[u]=I[\Delta u] .
$$

Here $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}$ denotes the Laplacian on \mathbb{R}^{n}.
3. (extra credit, continue with the convention in problem 2 above) Suppose that $u(\mathbf{x}, t)$ satisfies the wave equation $\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \Delta\right) u=0$. Show that $I[u](\mathbf{x}, r, t)$ satisfies the differential equation

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial r^{2}}-c^{2} \frac{n-1}{r} \frac{\partial}{\partial r}\right) I[u](\mathbf{x}, r, t)=0
$$

4. (extra credit) Suppose that n is an odd number, and let $n=2 k+1$, where k is an odd positive integer. Suppose that $u(\mathbf{x}, t)$ in problem 2 satisfies the wave equation $\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \Delta\right) u=$ 0 . Show that the function

$$
U(\mathbf{x}, r, t)=\left(\frac{1}{r} \frac{\partial}{\partial r}\right)^{k-1}\left(r^{2 k-1} I[u](\mathbf{x}, r, t)\right)
$$

on $\mathbb{R}^{n} \times \mathbb{R}_{>0} \times \mathbb{R}$ satisfies the 1 -dimensional wave equation

$$
\left(\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial r^{2}}\right) U(\mathbf{x}, r, t)=0
$$

