MATH 4250 PROBLEM SET 9, SPRING 2024

Part 1. From Strauss, Partial Differential Equations.

- Exercise 9.2, #12, page 241.
- Exercise 10.1, #2, #3 page 264

Part 2. Read pages 266–269 of Strauss, on Bessel functions. The definition of Bessel functions J_n of integral order is given on page 267 of Strauss.

- 2.1 Show that $\frac{d}{dx}J_0(x) = -J_1(x)$.
- 2.2 Show that

$$\frac{d}{dx}(x^n J_n(x)) = x^n J_{n-1}(x)$$

for all integers $n \ge 1$.

2.3 (extra credit) Show that

$$e^{x(t-t^{-1})} = J_0(x) + \sum_{n=1}^{\infty} J_n(x)[t^n + (-1)^n t^{-n}] \qquad \forall t \neq 0.$$

(The function $e^{x(t-t^{-1})}$ is called the generating function of Bessel functions of integer order. When expanded in powers of t, the coefficients of t^n and t^{-n} are $J_n(x)$ and $(-1)^n J_n(x)$ for all $n \ge 0$. You can think of it as an easy way to "remember" the power series expansion of the J_n 's.)

Part 3.

1. Let $u_1(\mathbf{x}, t), u_2(\mathbf{x}, t)$ be smooth functions on $\mathbb{R}^3 \times \mathbb{R}$ which satisfy the wave equation. Here $\mathbf{x} = (x_1, x_2, x_3)$. Let $\phi_i(\mathbf{x}) = u_i(\mathbf{x}, 0), \ \psi_i(\mathbf{x}) = \frac{\partial u}{\partial t}(\mathbf{x}, 0)$ for i = 1, 2. Suppose ϕ_i, ψ_i are functions of \mathbf{x} , i.e. there exists function f_i, g_i in one variable such that $\phi_i(\mathbf{x}) = f_i(|x|), \ \psi_i(\mathbf{x}) = g_i(|x|), \ i = 1, 2$. Let $r_0 > 0$ be a positive number such that $f_1(r_0) = f_2(r_0)$ and $g_1(r_0) = g_2(r_0)$.

- (a) Is it necessarily true that $u_1(0, r_0/c) = u_2(0, r_0/c)$?
- (b) (extra credit) Either give a complete proof that the answer to (a) is affirmative, or give a counter-example to show that the answer to (a) is negative.

2. (extra credit) It is known that the surface area (in dimension n-1) of the unit sphere in \mathbb{R}^n is $2\pi^{n/2}/\Gamma(\frac{n}{2}) := A_n$, and the volume of the unit ball in \mathbb{R}^n is $A_n/n = \pi^{n/2}/\Gamma(\frac{n}{2}+1)$. Here Γ is the Gamma function; see A.5 of Strauss.

Denote by $\mathbf{x} = (x_1, \ldots, x_n)$ the coordinate functions on \mathbb{R}^n . For any smooth function $u(\mathbf{x}, t)$ on $\mathbb{R}^n \times \mathbb{R}$, define the spherical mean function on $\mathbb{R}^4 \times \mathbb{R}_{>0} \times \mathbb{R}$ attached to u, by

$$I[u](\mathbf{x}, r, t) = \frac{1}{C_n r^{n-1}} \int_{|\mathbf{w}|=r} u(\mathbf{x} + \mathbf{w}, t) \, dS_{\mathbf{w}} = \frac{1}{C_n} \int_{|\mathbf{y}=1} u(\mathbf{x} + r\mathbf{y}) \, dS_{\mathbf{y}},$$

where $dS_{\mathbf{w}}$ denotes the surface area element for the sphere $\{\mathbf{w} \in \mathbb{R}^n : |\mathbf{w}| = r\}$ of radius r in \mathbb{R}^n , and similarly for $dS_{\mathbf{y}}$.

(a) Show that

$$\frac{\partial}{\partial r}I[u](\mathbf{x},r,t) = \frac{1}{r^{n-1}}\int_0^r I[\Delta u](\mathbf{x},\rho,t)\rho^{n-1}d\rho$$

(differentiate under the integral sign, then use the divergence theorem)

(b) Show that

$$\frac{\partial}{\partial r} \left(r^{n-1} \frac{\partial}{\partial r} I[u] \right)(\mathbf{x}, r, t) = r^{n-1} I[\Delta u](\mathbf{x}, r, t).$$

In other words,

$$\left(\frac{\partial^2}{\partial r^2} + \frac{n-1}{r}\frac{\partial}{\partial r}\right)I[u] = I[\Delta u].$$

Here $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$ denotes the Laplacian on \mathbb{R}^n .

3. (extra credit, continue with the convention in problem 2 above) Suppose that $u(\mathbf{x}, t)$ satisfies the wave equation $\left(\frac{\partial^2}{\partial t^2} - c^2 \Delta\right) u = 0$. Show that $I[u](\mathbf{x}, r, t)$ satisfies the differential equation

$$\left(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial r^2} - c^2 \frac{n-1}{r} \frac{\partial}{\partial r}\right) I[u](\mathbf{x}, r, t) = 0.$$

4. (extra credit) Suppose that n is an odd number, and let n = 2k + 1, where k is an odd positive integer. Suppose that $u(\mathbf{x}, t)$ in problem 2 satisfies the wave equation $\left(\frac{\partial^2}{\partial t^2} - c^2 \Delta\right) u = 0$. Show that the function

$$U(\mathbf{x}, r, t) = \left(\frac{1}{r}\frac{\partial}{\partial r}\right)^{k-1} \left(r^{2k-1}I[u](\mathbf{x}, r, t)\right)$$

on $\mathbb{R}^n \times \mathbb{R}_{>0} \times \mathbb{R}$ satisfies the 1-dimensional wave equation

$$\left(\frac{\partial^2}{\partial t^2} - c^2 \frac{\partial^2}{\partial r^2}\right) U(\mathbf{x}, r, t) = 0.$$