Math 602 Homework 1, Fall 2014

1. (a) Determine the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$.
(b) Compute $\operatorname{disc}(\mathbb{Q}(\sqrt[3]{2} / \mathbb{Q}))$ and $\mathscr{D}(\mathbb{Q}(\sqrt[3]{2} / \mathbb{Q}))$.
2. Let $F=\mathbb{Q}[T] /\left(T^{3}+T+1\right)$. Find the ring of integers \mathscr{O}_{F} of this number field F and compute $\operatorname{disc}(F / \mathbb{Q})$.
3. Let p be an odd prime number. Let $\mathbb{Q}\left(\mu_{p}\right)$ be the cyclotomic field generated by a non-trivial p-th root of unity in \mathbb{C}.
(a) Show that $\mathbb{Q}\left(\mu_{p}\right)$ contains a unique quadratic subfield, i.e. a subfield of degree 2 over \mathbb{Q}.
(b) Prove that $\mathbb{Q}\left(\sqrt{\left(\frac{-1}{p}\right) \cdot p}\right)$ is the quadratic subfield in $\mathbb{Q}\left(\mu_{p}\right)$. Here $\left(\frac{?}{?}\right)$ is the Legendre symbol.
4. Describe/determine the group $\mathbb{Q}_{p} \times /\left(\mathbb{Q}_{p}{ }^{\times}\right)^{2}$, where p is a prime number.
5. Let $\overline{\mathbb{Q}}_{p}$ be an algebraic closure of \mathbb{Q}_{p}. Let $\overline{\mathbb{Z}_{p}}$ be the integral closure of \mathbb{Z}_{p} in $\overline{\mathbb{Q}}_{p}$. Denote by $\left|\left.\right|_{p}\right.$ the unique extension to $\overline{\mathbb{Q}}_{p}$ of the normalized absolute value of \mathbb{Q}_{p}. For every positive real number a, let $S_{a}=\left\{x \in \overline{\mathbb{Z}_{p}}:|x|_{p}<a\right.$.
(a) Show that S_{a} is an ideal of $\overline{\mathbb{Z}_{p}}$ for every positive real number a.
(b) Show that the ideal S_{a} is not a finitely generated ideal of $\overline{\mathbb{Z}_{p}}$.
(c) Besides the ideals S_{a} 's, are there other non-finitely generated ideals of $\overline{\mathbb{Z}_{p}}$? Either give such an example, or show that no such example exists.
6. Let N be a positive integer.
(a) Show that up to isomorphism there are only a finite number of extension fields of \mathbb{Q}_{p} of degree at most N.
(b) Is it true that to isomorphism there are only a finite number of extension fields of $\mathbb{F}_{p}((t))$ of degree at most N ?
