MATH 602 HOMEWORK 1, FALL 2014

- 1. (a) Determine the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$.
- (b) Compute disc $\left(\mathbb{Q}(\sqrt[3]{2}/\mathbb{Q})\right)$ and $\mathscr{D}\left(\mathbb{Q}(\sqrt[3]{2}/\mathbb{Q})\right)$.

2. Let $F = \mathbb{Q}[T]/(T^3 + T + 1)$. Find the ring of integers \mathscr{O}_F of this number field F and compute $\operatorname{disc}(F/\mathbb{Q})$.

3. Let *p* be an odd prime number. Let $\mathbb{Q}(\mu_p)$ be the cyclotomic field generated by a non-trivial *p*-th root of unity in \mathbb{C} .

- (a) Show that $\mathbb{Q}(\mu_p)$ contains a unique quadratic subfield, i.e. a subfield of degree 2 over \mathbb{Q} .
- (b) Prove that $\mathbb{Q}\left(\sqrt{\left(\frac{-1}{p}\right)} \cdot p\right)$ is the quadratic subfield in $\mathbb{Q}(\mu_p)$. Here $\left(\frac{?}{?}\right)$ is the Legendre symbol.
- 4. Describe/determine the group $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$, where p is a prime number.

5. Let $\overline{\mathbb{Q}}_p$ be an algebraic closure of \mathbb{Q}_p . Let $\overline{\mathbb{Z}}_p$ be the integral closure of \mathbb{Z}_p in $\overline{\mathbb{Q}}_p$. Denote by $||_p$ the unique extension to $\overline{\mathbb{Q}}_p$ of the normalized absolute value of \mathbb{Q}_p . For every positive real number *a*, let $S_a = \{x \in \overline{\mathbb{Z}_p} : |x|_p < a.$

- (a) Show that S_a is an ideal of $\overline{\mathbb{Z}_p}$ for every positive real number *a*.
- (b) Show that the ideal S_a is *not* a finitely generated ideal of $\overline{\mathbb{Z}_p}$.
- (c) Besides the ideals S_a 's, are there other non-finitely generated ideals of $\overline{\mathbb{Z}_p}$? Either give such an example, or show that no such example exists.
- 6. Let *N* be a positive integer.
 - (a) Show that up to isomorphism there are only a finite number of extension fields of \mathbb{Q}_p of degree at most *N*.
 - (b) Is it true that to isomorphism there are only a finite number of extension fields of $\mathbb{F}_p((t))$ of degree at most *N*?