MATH 602 HOMEWORK 2, FALL 2014

1. Is there a non-perfect field $k \supset \mathbb{F}_p$ such that W(k) is a discrete valuation ring with p as a uniformizer? Either give an example of a non-perfeld field k which has this property, or show that no such non-perfeld k exist.

- 2. Suppose that k is a locally compact field and G is an algebraic group over k of dimension d.
 - (a) Show that every left invariant non-trivial differential *d*-form α on *G* gives rise to a left-invariant Haar measure μ_{α} on *G*(*k*), where *G*(*k*) is the set of all *k*-points of *G*.
 - (b) Illustrate (a) in the following cases: $G = GL_n, SL_n, PGL_n$.

[An algebraic group over a field *F* is an algebraic variety *G* together with two morphisms, multiplication $\mu: G \times G \to G$ and inverse $\iota: G \to G$ satisfying the usual conditions for group laws. You can find definitions of *linear algebraic groups* such as Springer, Borel or Humphreys.]

3. Let *p* be an odd prime number, and let *K* be an unramified quadratic extension of \mathbb{Q}_p . Determine the group structure of \mathscr{O}_K^{\times} . In particular, is it isomorphic to a product of a finite group and a direct sum of copies of \mathbb{Z}_p ?

4. (a) Is there a field automorphism of \mathbb{Q}_p whose restriction to $\mathbb{Q}_p \cap \overline{\mathbb{Q}}$ is a non-trivial field automorphism of $\mathbb{Q}_p \cap \overline{\mathbb{Q}}$?

(b) Is there a field automorphism of \mathbb{R} whose restriction to $\mathbb{R} \cap \overline{\mathbb{Q}}$ is a non-trivial field automorphism of $\mathbb{R} \cap \overline{\mathbb{Q}}$?