MATH 602 HOMEWORK 3, FALL 2014

1. Let *K* be a global field. Let

$$j_1: \mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K$$

be the inclusion map, and let

$$j: \mathbb{A}_K^{\times} \hookrightarrow \mathbb{A}_K \times \mathbb{A}_K$$

be the map $j: x \mapsto (x, x^{-1})$ for every $x \in \mathbb{A}_K^{\times}$. Let \mathfrak{T}_1 be the topology on \mathbb{A}_K^{\times} induced by the inclusion j_1 ; let \mathfrak{T} be the topology induced on \mathbb{A}_K^{\times} induced by j and the product topology on $\mathbb{A}_K \times \mathbb{A}_K$

- (a) Clearly the topology \mathfrak{T}_1 is coarser than \mathfrak{T} . Are they equal?
- (b) Show that $j^{-1}(C)$ is compact for every compact subset $C \subset \mathbb{A}_K \times \mathbb{A}_K$.
- (c) Give an example of a compact subset $C_1 \subset \mathbb{A}_K$ such that $j_1^{-1}(C_1)$ is not compact.

2. Let *K* be a number field. Let $H(\mathbb{A}_K)$ be the subgroup of $GL_3(\mathbb{A}_K)$ consisting of all 3×3 matrices of the form $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ with $a, b, c \in \mathbb{A}_K$. Similarly let H(K) be the subgroup of $GL_3(K)$ consisting of all 3×3 matrices of the form $\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$ with $a, b, c \in K$.

- (a) Show that H(K) is a discrete subgroup of $H(\mathbb{A}_K)$.
- (b) Show that $H(K) \setminus H(\mathbb{A}_K)$ is compact.

3. (a) Consider the ring homomorphism $\hat{\mathbb{Z}} = \prod_p \mathbb{Z}_p \to \mathbb{A}_{\mathbb{Q},f}$ given by the inclusion map. Show that the associated ring homomorphism $\hat{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{A}_{\mathbb{Q},f}$ is an isomorphism.

(b) Consider the subgroup $\mathbb{R} \times \hat{\mathbb{Z}}$ of $\mathbb{A}_{\mathbb{Q}} = \mathbb{R} \times \mathbb{A}_{\mathbb{Q},f}$ and the associated map $f : (\mathbb{R} \times \hat{\mathbb{Z}})/\mathbb{Z} \to \mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$. Is this map f a bijection? Either give a proof or a counter-example.

4. Let *K* be a number field.

- (a) Let $K^{\times} \cdot \prod_{\nu \in \Sigma_{K,f}} \mathscr{O}_{K_{\nu}}^{\times}$ be the subgroup of $\mathbb{A}_{K,f}^{\times} = \prod_{\nu \in \Sigma_{K,f}} K_{\nu}^{\times}$ generated by K^{\times} and $\prod_{\nu \in \Sigma_{K,f}} \mathscr{O}_{K_{\nu}}^{\times}$. Show that $K^{\times} \cdot \prod_{\nu \in \Sigma_{K,f}} \mathscr{O}_{K_{\nu}}^{\times}$ is a *closed* subgroup of $\mathbb{A}_{K,f}^{\times}$.
- (b) Assume that the subring of algebraic integers \mathscr{O}_K in *K* is a principal ideal domain. Is $\mathbb{A}_{K,f}^{\times}$ equal to $K^{\times} \cdot \prod_{\nu \in \Sigma_{K,f}} \mathscr{O}_{K_{\nu}}^{\times}$? Either give a proof or give a counter-example.

5. Let *K* be a global field. Let $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n) \in K[x_1, \ldots, x_n]$ be a system of *m* polynomials in *n* variables x_1, \ldots, x_n . Let $V(K) = \{(a_1, \ldots, a_n) \in K^n | f_i(a_1, \ldots, a_n) = 0 \forall i = 1, \ldots, m\}$. Let $V(\mathbb{A}_K) = \{(a_1, \ldots, a_n) \in \mathbb{A}_K^n | f_i(a_1, \ldots, a_n) = 0 \forall i = 1, \ldots, m\}$, endowed with the subspace topology induced from the product topology of \mathbb{A}_K^n . Is V(K) a *discrete* subset of $V(\mathbb{A}_K)$? Either give a proof or give a counter-example.

6. Let $SL_2(\mathbb{A}_{\mathbb{Q}})$ be the group of all 2×2 matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with $a, b, c, d \in \mathbb{A}_{\mathbb{Q}}$ and ad - bc = 1, endowed with the topology as a subspace of \mathbb{A}_K^4 .

- (a) Show that $SL_2(\mathbb{Q})$ is a discrete subgroup of $SL_2(\mathbb{A}_\mathbb{Q})$
- (b) Show that $SL_2(\mathbb{A}_{\mathbb{Q}})/SL_2(\mathbb{Q})$ is non-compact.
- (c) Show every left Haar measure on $SL_2(\mathbb{A}_\mathbb{Q})$ is a right Haar measure.
- (d) Show that $SL_2(\mathbb{A}_{\mathbb{Q}})/SL_2(\mathbb{Q})$ has *finite* measure for any Haar measure on $SL_2(\mathbb{A}_{\mathbb{Q}})$.