MATH 602 HOMEWORK 4, FALL 2014

1. Let *D* be a Dedekind domain and let *K* be the field of fractions of *D*. For every non-zero maximal ideal ideal \mathcal{P} of *D*, let $D_{\mathcal{P}}$ be the localization of *D* at \mathcal{P} , let $\hat{D}_{\mathcal{P}} = \varprojlim_n D/\mathcal{P}^n$ be the \mathcal{P} -adic completion of *D*, and let $\hat{K}_{\mathcal{P}}$ be the field of fractions of $\hat{D}_{\mathcal{P}}$.

- (a) Show that \hat{D}_{\wp} is naturally isomorphic to the completion of the discrete valuation ring D_{\wp} for every non-zero maximal \wp of D.
- (b) Let I, J be two non-zero D-submodules of K. Show that the following statements are equivalent.
 - (b1) $I \subseteq J$
 - (b2) $I \cdot D_{\wp} \subseteq J \cdot D_{\wp}$ as D_{\wp} -submodules of *K*, for every maximal ideal \wp of *D*.
 - (b3) $I \cdot \hat{D}_{\wp} \subseteq J \cdot \hat{D}_{\wp}$ as \hat{D}_{\wp} -submodules of \hat{K}_{\wp} , for every maximal ideal \wp of D. Here $I \cdot \hat{D}_{\wp}$ is the \hat{D}_{\wp} -submodule of \hat{K}_{\wp} generated by I; similarly for $J \cdot \hat{D}_{\wp}$.

2. (This problem is a slightly more general version of an exercise given in class.) Let *A* be a Dedekind domain and let *K* be the fraction field of *A*. Let *L* be a finite separable extension of *K* and let *B* be the integral closure of *A* in *L*. Let \mathcal{O} be an *order* in *B*, i.e. \mathcal{O} is a subring of *B* which contains *A* and \mathcal{O} contains a *K*-basis of *L*. (Consequently B/\mathcal{O} is an *A*-module of finite length.) Let

$$\mathfrak{c}(\mathscr{O}) = \{ x \in L \, | \, x \cdot B \subseteq \mathscr{O} \}$$

the conductor of the order \mathcal{O} , which was written as $(\mathcal{O}: B)$ in class. Let

$$\mathscr{D}^{-1}(B/A) = \{ x \in L \,|\, \operatorname{Tr}_{L/K}(x \cdot B) \subset A \},\$$

the inverse different of B/A. Let

$$\mathscr{D}^{-1}(\mathscr{O}/A) = \{ x \in L \,|\, \mathrm{Tr}_{L/K}(x \cdot \mathscr{O}) \subset A \}.$$

- (a) Show that $\mathfrak{c}(\mathcal{O})$ is the largest ideal of *B* which is contained in \mathcal{O} . (This was given in class as an exercise.)
- (b) Prove that

$$\mathfrak{c}(\mathscr{O}) = \{ x \in L \, | \, x \cdot \mathscr{D}^{-1}(\mathscr{O}/A) \subseteq \mathscr{D}^{-1}(B/A) \}.$$

(c) Suppose that $\alpha \in B$ is an element of *B* such that $L = K(\alpha)$ and let f(T) be the minimal polynomial of α over *K*. Show that

$$\mathfrak{c}(A[\alpha]) = f'(\alpha) \cdot \mathscr{D}^{-1}(\mathscr{O}/A).$$

3. Let *K* be a number field. Consider K^{\times} as a subgroup of $\mathbb{A}_{K,f}^{\times}$. Show that $K^{\times} \cdot \prod_{v \in \Sigma_{K,f}} \mathscr{O}_{K_v}^{\times} = \mathbb{A}_{K,f}^{\times}$ if and only if \mathscr{O}_K is a principal ideal domain.

4. (a) For $K = \mathbb{Q}, \mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{2}), \mathbb{Q}(\sqrt[3]{5})$, determine whether K^{\times} is discrete in $\mathbb{A}_{K,f}^{\times}$.

(b) Is $GL_2(\mathbb{Q})$ discrete in $GL_2(\mathbb{A}_{\mathbb{Q},f})$?

(c) Show that for every open subgroup $U \subset SL_2(\mathbb{A}_{\mathbb{Q},f})$, $U \cap SL_2(\mathbb{Z})$ is a subgroup of finite index of $SL_2(\mathbb{Z})$.

(d) Is it true that every subgroup $\Gamma \subset SL_2(\mathbb{Z})$ of finite index in $SL_2(\mathbb{Z})$ contains a subgroup of the form $U \cap SL_2(\mathbb{Z})$ for some open subgroup $U \subset SL_2(\mathbb{A}_{\mathbb{Q},f})$? Either give a proof or a counter-example.