MATH 602 HOMEWORK 6, FALL 2014

- 1. Let *F* be a locally compact field. Let $\chi : F^{\times} \to \mathbb{C}^{\times}$ be a continuous character of F^{\times} .
 - (a) Show that there exists a unique pair (σ, α) with $\sigma \in \mathbb{R}$ and $\alpha : F^{\times} \to \mathbb{C}_1^{\times}$ a unitary character such that $\chi = \alpha \cdot \omega_{\sigma}$. (We say that σ is the *real part* of χ)
 - (b) Suppose that *F* is non-archimedian. Show that $\alpha(\mathscr{O}_F^{\times})$ is finite.
 - (c) Suppose that F is non-archimedian. Show that χ has finite order if and only if there exists a uniformizer π of F such that $\chi(\pi)$ is a root of unity.
- 2. Determine explicitly
 - (a) the structure of the unitary dual of \mathbb{Q}_p^{\times} as a topologial group, and
 - (b) the structure of $\operatorname{Hom}_{\operatorname{cts}}(\mathbb{Q}_p^{\times}, \mathbb{C}^{\times})$ as a one-dimensional complex Lie group.

3. Compute explicitly the local L-function $L(\chi)$ and local constants $\varepsilon(\chi, \psi, dx)$ for all character χ of \mathbb{Q}_p^{\times} , all non-trivial unitary additive character ψ of \mathbb{Q}_p and all Haar measure dx of \mathbb{Q}_p .

4. Let *K* be a number field and let $\chi : \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$ be an idele class character, i.e. χ is trivial on K^{\times} . Suppose that the image of $(K \otimes_{\mathbb{Q}} \mathbb{R})^{\times}$ under χ is a finite subgroup of \mathbb{C}^{\times} . Is χ a character of finite order? Either give a proof or give a counter-example.