MATH 602 HOMEWORK 7, FALL 2014

- 1. Let *K* be a number field. Recall that Σ_K is the set of all places of *K*.
 - (a) Show that for every continuous character $\psi : \mathbb{A}_K \to \mathbb{C}^{\times}$, there exists a finite subset $S \subset \Sigma_K$ containing $\Sigma_{K,\infty}$ such that $\psi(\mathcal{O}_v) = 1$ for all $v \notin S$.
 - (b) Show that for every continuous character $\chi : \mathbb{A}_K^{\times} \to \mathbb{C}^{\times}$, there exists a finite subset $S \subset \Sigma_K$ containing $\Sigma_{K,\infty}$ such that $\chi(\mathscr{O}_v^{\times}) = 1$ for all $v \notin S$.
 - (c) Let *F* be a nonarchimedean locally compact field. Show that every continuous character ψ : $(F,+) \rightarrow \mathbb{C}^{\times}$ is unitary. Does this statement hold for archimedean locally compact fields?
 - (d) Let *K* be a global function field field. Show that every character of $\mathbb{A}_K \to \mathbb{C}^{\times}$ is unitary.
 - (f) Show that for every number field *K*, there exists a character $\psi : \mathbb{A}_K \to \mathbb{C}^{\times}$ which is *not* unitary.
- 2. Let *K* be a number field.
 - (1) Show that there is a natural bijection between (a) the set of all continuous characters of A_K and (b) the set of all sequences (ψ_ν)_{ν∈Σ_K} indexed by Σ_K such that ψ_ν is a character of K_ν for each v ∈ Σ_K and there exists a finite subset S ⊂ Σ_K containing Σ_{K,∞} such that ψ_ν(𝒫_ν) = 1 for every v ∉ S.
 - (2) Show that there is a natural bijection between (a) the set of all continuous characters of A[×]_K and (b) the set of all sequences (χ_ν)_{ν∈Σ_K} indexed by Σ_K such that χ_ν is a character of K[×]_ν for each v ∈ Σ_K and there exists a finite subset S ⊂ Σ_K containing Σ_{K,∞} such that χ_ν(𝔅[×]_ν) = 1 for every v ∉ S.

3. For each prime number p, let $\Lambda_p : \mathbb{Q}_p \to \mathbb{Z}[1/p]/\mathbb{Z}$ be the composition of the projection $\mathbb{Q}_p \to \mathbb{Q}_p/Zp$ with the inverse of the isomorphism $\mathbb{Q}_p/Zp \xrightarrow{\sim} \mathbb{Z}[1/p]/\mathbb{Z}$. Let $\Lambda_\infty : \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ be the *negative* of the natural projection. Let $\psi_{\mathbb{Q}} : \mathbb{A}_{\mathbb{Q}} \to \mathbb{C}_1^{\times}$ be the map defined by

$$\psi_{\mathbb{Q}}(x) = \prod_{\nu \in \Sigma_{\mathbb{Q}}} e^{2\pi \sqrt{-1} \cdot \Lambda_{\nu}(x_{\nu})} \quad \forall x = (x_{\nu})_{\nu \in \Sigma_{\mathbb{Q}}} \in \mathbb{A}_{\mathbb{Q}}.$$

(a) For every finite extension field *F* of \mathbb{Q}_p , define $\psi_F : F \to \mathbb{C}^{\times}$ by

$$\psi_F(x) = e^{2\pi\sqrt{-1}\cdot\Lambda_p(\operatorname{Tr}_{F/\mathbb{Q}_p}(x))}.$$

Show ψ_F is a continuous additive unitary character of *F*, and that for every continuous additive character $\psi : F \to \mathbb{C}^{\times}$, there exists a unique element $y \in F$ such that $\psi(x) = \psi_F(xy)$ for every $x \in F$.

- (b) Prove that $\psi_{\mathbb{Q}}$ is continuous and defines a non-trivial unitary character on $\mathbb{A}_{\mathbb{Q}}/\mathbb{Q}$.
- (c) For every number field *K*, define a homomorphism $\psi_K : \mathbb{A}_K \to \mathbb{C}_1^{\times}$ by $\psi_K(x) = \psi_{\mathbb{Q}} \circ \operatorname{Tr}_{K/\mathbb{Q}}(x)$. Show that for every $y \in \mathbb{A}_K$, the map $x \mapsto \psi_K(xy)$ is a unitary character of \mathbb{A}_K .
- (d) Let *K* be a number field. Show that for every continuous unitary character $\psi : \mathbb{A}_K \to \mathbb{C}^{\times}$ on \mathbb{A}_K , there exists a unique element $y \in \mathbb{A}_K$ such that $\psi(x) = \psi_K(xy \text{ for all } x \in \mathbb{A}_K$.
- (e) Show that for every number field *K* and every continuous character $\phi : \mathbb{A}_K / K \to \mathbb{C}^{\times}$, there exists a unique element $y \in K$ such that $\psi(x) = \psi_K(xy)$ for all $x \in \mathbb{A}_K$.

4. Find explicitly a Schwartz function f on $\mathbb{A}_{\mathbb{Q},f}$, an idele class character $\chi : \mathbb{A}_{\mathbb{Q}}^{\times} \to \mathbb{C}^{\times}$ and a Haar measure $d^{\times}x$ on $\mathbb{A}_{\mathbb{A},f}^{\times}$ such that the associated zeta function

$$\zeta(f, \boldsymbol{\chi} \cdot \boldsymbol{\omega}_{s}, d^{\times} x) = \int_{\mathbb{A}_{\mathbb{Q},f}^{\times}} f(x) \cdot (\boldsymbol{\chi} \boldsymbol{\omega}_{s})(x) d^{\times} x$$

is equal to the Dirichlet L-function

$$L(s, \left(\frac{-1}{\cdot}\right)) = \sum_{p>2} \left(1 - \left(\frac{-1}{p}\right) p^{-s}\right)^{-1}$$

attached to the Legendre symbol $\left(\frac{-1}{\cdot}\right)$.