Math 602 Homework 7, Fall 2014

1. Let K be a number field. Recall that Σ_{K} is the set of all places of K.
(a) Show that for every continuous character $\psi: \mathbb{A}_{K} \rightarrow \mathbb{C}^{\times}$, there exists a finite subset $S \subset \Sigma_{K}$ containing $\Sigma_{K, \infty}$ such that $\psi\left(\mathscr{O}_{v}\right)=1$ for all $v \notin S$.
(b) Show that for every continuous character $\chi: \mathbb{A}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$, there exists a finite subset $S \subset \Sigma_{K}$ containing $\Sigma_{K, \infty}$ such that $\chi\left(\mathscr{O}_{v}^{\times}\right)=1$ for all $v \notin S$.
(c) Let F be a nonarchimedean locally compact field. Show that every continuous character ψ : $(F,+) \rightarrow \mathbb{C}^{\times}$is unitary. Does this statement hold for archimedean locally compact fields?
(d) Let K be a global function field field. Show that every character of $\mathbb{A}_{K} \rightarrow \mathbb{C}^{\times}$is unitary.
(f) Show that for every number field K, there exists a character $\psi: \mathbb{A}_{K} \rightarrow \mathbb{C}^{\times}$which is not unitary.
2. Let K be a number field.
(1) Show that there is a natural bijection between (a) the set of all continuous characters of \mathbb{A}_{K} and (b) the set of all sequences $\left(\psi_{v}\right)_{v \in \Sigma_{K}}$ indexed by Σ_{K} such that ψ_{v} is a character of K_{v} for each $v \in \Sigma_{K}$ and there exists a finite subset $S \subset \Sigma_{K}$ containing $\Sigma_{K, \infty}$ such that $\psi_{v}\left(\mathscr{O}_{v}\right)=1$ for every $v \notin S$.
(2) Show that there is a natural bijection between (a) the set of all continuous characters of \mathbb{A}_{K}^{\times}and (b) the set of all sequences $\left(\chi_{v}\right)_{v \in \Sigma_{K}}$ indexed by Σ_{K} such that χ_{v} is a character of K_{v}^{\times}for each $v \in \Sigma_{K}$ and there exists a finite subset $S \subset \Sigma_{K}$ containing $\Sigma_{K, \infty}$ such that $\chi_{v}\left(\mathscr{O}_{v}^{\times}\right)=1$ for every $v \notin S$.
3. For each prime number p, let $\Lambda_{p}: \mathbb{Q}_{p} \rightarrow \mathbb{Z}[1 / p] / \mathbb{Z}$ be the composition of the projection $\mathbb{Q}_{p} \rightarrow$ $\mathbb{Q}_{p} / Z p$ with the inverse of the isomorphism $\mathbb{Q}_{p} / Z p \xrightarrow{\sim} \mathbb{Z}[1 / p] / \mathbb{Z}$. Let $\Lambda_{\infty}: \mathbb{R} \rightarrow \mathbb{R} / \mathbb{Z}$ be the negative of the natural projection. Let $\psi_{\mathbb{Q}}: \mathbb{A}_{\mathbb{Q}} \rightarrow \mathbb{C}_{1}^{\times}$be the map defined by

$$
\psi_{\mathbb{Q}}(x)=\prod_{v \in \Sigma_{\mathbb{Q}}} e^{2 \pi \sqrt{-1} \cdot \Lambda_{v}\left(x_{v}\right)} \quad \forall x=\left(x_{v}\right)_{v \in \Sigma_{\mathbb{Q}}} \in \mathbb{A}_{\mathbb{Q}} .
$$

(a) For every finite extension field F of \mathbb{Q}_{p}, define $\psi_{F}: F \rightarrow \mathbb{C}^{\times}$by

$$
\psi_{F}(x)=e^{2 \pi \sqrt{-1} \cdot \Lambda_{p}\left(\operatorname{Tr}_{F / \mathbb{Q}_{p}}(x)\right)} .
$$

Show ψ_{F} is a continuous additive unitary character of F, and that for every continuous additive character $\psi: F \rightarrow \mathbb{C}^{\times}$, there exists a unique element $y \in F$ such that $\psi(x)=\psi_{F}(x y)$ for every $x \in F$.
(b) Prove that $\psi_{\mathbb{Q}}$ is continuous and defines a non-trivial unitary character on $\mathbb{A}_{\mathbb{Q}} / \mathbb{Q}$.
(c) For every number field K, define a homomorphism $\psi_{K}: \mathbb{A}_{K} \rightarrow \mathbb{C}_{1}^{\times}$by $\psi_{K}(x)=\psi_{\mathbb{Q}} \circ \operatorname{Tr}_{K / \mathbb{Q}}(x)$. Show that for every $y \in \mathbb{A}_{K}$, the map $x \mapsto \psi_{K}(x y)$ is a unitary character of \mathbb{A}_{K}.
(d) Let K be a number field. Show that for every continuous unitary character $\psi: \mathbb{A}_{K} \rightarrow \mathbb{C}^{\times}$on \mathbb{A}_{K}, there exists a unique element $y \in \mathbb{A}_{K}$ such that $\psi(x)=\psi_{K}\left(x y\right.$ for all $x \in \mathbb{A}_{K}$.
(e) Show that for every number field K and every continuous character $\phi: \mathbb{A}_{K} / K \rightarrow \mathbb{C}^{\times}$, there exists a unique element $y \in K$ such that $\psi(x)=\psi_{K}(x y)$ for all $x \in \mathbb{A}_{K}$.
4. Find explicitly a Schwartz function f on $\mathbb{A}_{\mathbb{Q}, f}$, an idele class character $\chi: \mathbb{A}_{\mathbb{Q}}^{\times} \rightarrow \mathbb{C}^{\times}$and a Haar measure $d^{\times} x$ on $\mathbb{A}_{\mathbb{A}, f}^{\times}$such that the associated zeta function

$$
\zeta\left(f, \chi \cdot \omega_{s}, d^{\times} x\right)=\int_{\mathbb{A}_{\mathbb{Q}, f}^{\times}} f(x) \cdot\left(\chi \omega_{s}\right)(x) d^{\times} x
$$

is equal to the Dirichlet L-function

$$
L\left(s,\left(\frac{-1}{-}\right)\right)=\sum_{p>2}\left(1-\left(\frac{-1}{p}\right) p^{-s}\right)^{-1}
$$

attached to the Legendre symbol $\left(\frac{-1}{\cdot}\right)$.

