Administration

- please fill out questionnaire

Syllabus

- office hours (Mon/Wed 11-12)

Syllabus

- office hours (Mon/Wed 11-12)
- textbook

Syllabus

- office hours (Mon/Wed 11-12)
- textbook
- course webpage

Syllabus

- office hours (Mon/Wed 11-12)
- textbook
- course webpage
- note exam dates

Syllabus

- office hours (Mon/Wed 11-12)
- textbook
- course webpage
- note exam dates
- homework, paper

Syllabus

- office hours (Mon/Wed 11-12)
- textbook
- course webpage
- note exam dates
- homework, paper
- academic integrity

Syllabus

- office hours (Mon/Wed 11-12)
- textbook
- course webpage
- note exam dates
- homework, paper
- academic integrity
- questions?

A Game Show:

- You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.

A Game Show:

- You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.
- Do you ROLL or NOT?

A Game Show:

- You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.
- Do you ROLL or NOT?
- What is the dilemma here?

Some Definitions

- Consider some experiment.

Some Definitions

- Consider some experiment.
- An outcome is a possible result of the experiment.

Some Definitions

- Consider some experiment.
- An outcome is a possible result of the experiment.
- The sample space is the set of all possible outcomes.

Some Definitions

- Consider some experiment.
- An outcome is a possible result of the experiment.
- The sample space is the set of all possible outcomes.
- An event is some collection of outcomes.

More Definitions

- The probability of some event A represents what fraction of the time event A occurs when the SAME EXPERIMENT is repeated many, many times.

More Definitions

- The probability of some event A represents what fraction of the time event A occurs when the SAME EXPERIMENT is repeated many, many times.
- In other words:

$$
P(A)=\frac{\text { number of times event } \mathrm{A} \text { occurs in } N \text { trials }}{\text { number of trials, } N}
$$

when N is large.

More Definitions

- The probability of some event A represents what fraction of the time event A occurs when the SAME EXPERIMENT is repeated many, many times.
- In other words:

$$
P(A)=\frac{\text { number of times event } \mathrm{A} \text { occurs in } N \text { trials }}{\text { number of trials, } N}
$$

when N is large.

- $P(A)$ means "the probability of A " or the "the probability event A occurs."

More Definitions

- The probability of some event A represents what fraction of the time event A occurs when the SAME EXPERIMENT is repeated many, many times.
- In other words:

$$
P(A)=\frac{\text { number of times event } \mathrm{A} \text { occurs in } N \text { trials }}{\text { number of trials, } N}
$$

when N is large.

- $P(A)$ means "the probability of A " or the "the probability event A occurs."
- Note that $P(A)$ is always a number between 0 and 1 .

Back to the Game Show

Back to the Game Show

- The experiment is rolling the die.

Back to the Game Show

- The experiment is rolling the die.
- Outcomes are rolling a one, two, ..., six.

Back to the Game Show

- The experiment is rolling the die.
- Outcomes are rolling a one, two, ..., six.
- The sample space is $\{1,2,3,4,5,6\}$.

Back to the Game Show

- The experiment is rolling the die.
- Outcomes are rolling a one, two, ..., six.
- The sample space is $\{1,2,3,4,5,6\}$.
- The probability of, say 4 , is $\frac{1}{6}$.
(assuming the die is "fair")

Back to the Game Show

- The experiment is rolling the die.
- Outcomes are rolling a one, two, ..., six.
- The sample space is $\{1,2,3,4,5,6\}$.
- The probability of, say 4 , is $\frac{1}{6}$.
(assuming the die is "fair")
- We want the expected payout of the experiment.

Expected Payout

- Suppose we play the game 600 times, and roll every time.

Expected Payout

- Suppose we play the game 600 times, and roll every time.
- Probability tells that we will win:
- 10, 000 one hundred times.
- 20,000 one hundred times.
- 30,000 one hundred times.
- 40,000 one hundred times.
- 50,000 one hundred times.
- 60,000 one hundred times.

Expected Payout

- Suppose we play the game 600 times, and roll every time.
- Probability tells that we will win:
- 10, 000 one hundred times.
- 20,000 one hundred times.
- 30,000 one hundred times.
- 40,000 one hundred times.
- 50,000 one hundred times.
- 60,000 one hundred times.
- What is the average amount that we will win per roll?

Expected Payout

$\$ 10,000 \cdot \frac{100 \cdot 1+100 \cdot 2+100 \cdot 3+100 \cdot 4+100 \cdot 5+100 \cdot 6}{600}$

Expected Payout

$\$ 10,000 \cdot \frac{100 \cdot 1+100 \cdot 2+100 \cdot 3+100 \cdot 4+100 \cdot 5+100 \cdot 6}{600}$
$=\$ 10,000 \cdot \frac{21}{6}$
$=\$ 35,000$

Expected Payout

$\$ 10,000 \cdot \frac{100 \cdot 1+100 \cdot 2+100 \cdot 3+100 \cdot 4+100 \cdot 5+100 \cdot 6}{600}$
$=\$ 10,000 \cdot \frac{21}{6}$
$=\$ 35,000$

- Note that $\$ 35,000$ does not depend on the number of times we perform the experiment.

Expected Payout

$\$ 10,000 \cdot \frac{100 \cdot 1+100 \cdot 2+100 \cdot 3+100 \cdot 4+100 \cdot 5+100 \cdot 6}{600}$
$=\$ 10,000 \cdot \frac{21}{6}$
$=\$ 35,000$

- Note that $\$ 35,000$ does not depend on the number of times we perform the experiment.
- This is called the expected payout or expected value.

Expected Payout

$\$ 10,000 \cdot \frac{100 \cdot 1+100 \cdot 2+100 \cdot 3+100 \cdot 4+100 \cdot 5+100 \cdot 6}{600}$
$=\$ 10,000 \cdot \frac{21}{6}$
$=\$ 35,000$

- Note that $\$ 35,000$ does not depend on the number of times we perform the experiment.
- This is called the expected payout or expected value.
- Formally, if all outcomes are A_{1}, \ldots, A_{n}, the expected values is $A_{1} \cdot P\left(A_{1}\right)+A_{2} \cdot P\left(A_{2}\right)+\cdots+A_{n} \cdot P\left(A_{n}\right)$

Law of Large Numbers

- The Law of Large Numbers says that the more times you play a game, the closer the average will be to the expected value.

Law of Large Numbers

- The Law of Large Numbers says that the more times you play a game, the closer the average will be to the expected value.
- An interpretation: You can't make $\$ 35,000$ in a single roll, but in the long run, rolling will make you more money.

