Administration

- email address: chhays@math.upenn.edu
- course webpage: math.upenn.edu/~chhays/math180.html

From Last Time:

- Game Show: You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.

From Last Time:

- Game Show: You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.
- One method of comparing: consider expected value of rolling $(\$ 35,000)$ to not rolling $(\$ 30,000)$.

From Last Time:

- Game Show: You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.
- One method of comparing: consider expected value of rolling $(\$ 35,000)$ to not rolling $(\$ 30,000)$.
- Law of large numbers says...

From Last Time:

- Game Show: You choose to either roll or not roll a six-sided die. I'll pay you $\$ 10,000$ times the value of the die OR $\$ 30,000$ if you do not roll.
- One method of comparing: consider expected value of rolling $(\$ 35,000)$ to not rolling $(\$ 30,000)$.
- Law of large numbers says...
- Not always best to choose using expected value.

Buying Stocks:

- Every day, the stock of Google has a $\frac{1}{3}$ chance to make payoff. The stock of Apple has a $\frac{1}{5}$ chance to make payoff.

Buying Stocks:

- Every day, the stock of Google has a $\frac{1}{3}$ chance to make payoff. The stock of Apple has a $\frac{1}{5}$ chance to make payoff.
- If the stocks cost the same, which will bring in more money over time?

Buying Stocks:

- Every day, the stock of Google has a $\frac{1}{3}$ chance to make payoff. The stock of Apple has a $\frac{1}{5}$ chance to make payoff.
- If the stocks cost the same, which will bring in more money over time?
- Not enough information!

Buying Stocks:

- Google's payout is 2 points and Apple's payout is 4 points.

Buying Stocks:

- Google's payout is 2 points and Apple's payout is 4 points.
- Over 100 days, what is the expected payout of each stock?

Buying Stocks:

- Google's payout is 2 points and Apple's payout is 4 points.
- Over 100 days, what is the expected payout of each stock?
- The expected payout of Google is $\frac{2}{3}$ points per day.

Buying Stocks:

- Google's payout is 2 points and Apple's payout is 4 points.
- Over 100 days, what is the expected payout of each stock?
- The expected payout of Google is $\frac{2}{3}$ points per day.
- The expected payout of Apple is $\frac{4}{5}$ points per day.

Buying Stocks:

- Google's payout is 2 points and Apple's payout is 4 points.
- Over 100 days, what is the expected payout of each stock?
- The expected payout of Google is $\frac{2}{3}$ points per day.
- The expected payout of Apple is $\frac{4}{5}$ points per day.
- On average, Apple pays more than Google

Buying Stocks:

- Google's payout is 2 points and Apple's payout is 4 points.
- Over 100 days, what is the expected payout of each stock?
- The expected payout of Google is $\frac{2}{3}$ points per day.
- The expected payout of Apple is $\frac{4}{5}$ points per day.
- On average, Apple pays more than Google
- What part of the above question is unnecessary?

Moral:

Expected value gives a way to evaluate decision alternatives PROVIDED:

- The probabilities of events are known.
- The same experiment is repeated many times.

Lawsuit

- In a lawsuit, your client sues for breach of contract.

Lawsuit

- In a lawsuit, your client sues for breach of contract.
- Trial costs \$20, 000.
- 60% chance of winning $\$ 100,000$.
- Defendant has offered a $\$ 70,000$ settlement.

Lawsuit

- In a lawsuit, your client sues for breach of contract.
- Trial costs \$20, 000.
- 60% chance of winning $\$ 100,000$.
- Defendant has offered a $\$ 70,000$ settlement.
- What should you do?

Lawsuit

- In a lawsuit, your client sues for breach of contract.
- Trial costs \$20, 000.
- 60% chance of winning $\$ 100,000$.
- Defendant has offered a $\$ 70,000$ settlement.
- What should you do?
- Expected value of trial is:

Lawsuit

- In a lawsuit, your client sues for breach of contract.
- Trial costs \$20, 000.
- 60% chance of winning $\$ 100,000$.
- Defendant has offered a $\$ 70,000$ settlement.
- What should you do?
- Expected value of trial is:
- \$40,000

Lawsuit

- In a lawsuit, your client sues for breach of contract.
- Trial costs \$20, 000.
- 60% chance of winning $\$ 100,000$.
- Defendant has offered a $\$ 70,000$ settlement.
- What should you do?
- Expected value of trial is:
- \$40, 000
- Settle!

Lawsuit

- In a lawsuit, your client sues for breach of contract.
- Trial costs \$20, 000.
- 60% chance of winning $\$ 100,000$.
- Defendant has offered a $\$ 70,000$ settlement.
- What should you do?
- Expected value of trial is:
- \$40, 000
- Settle!
- Where do percentages come from?
- Precedence, aspects of case, knowledge of judge...

Decision Trees

- Decision trees provide a way of organizing decisions

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.
- Work from right to left ("Decision Rollback")

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- - corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.
- Work from right to left ("Decision Rollback")
- Compute expected values of chance nodes

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.
- Work from right to left ("Decision Rollback")
- Compute expected values of chance nodes
- Compute expected values of decision nodes and eliminate bad choices

Product Decision

- See Handout 1

Product Decision

- See Handout 1
- How are probabilities obtained?

Product Decision

- See Handout 1
- How are probabilities obtained?
- How repeatable is this scenario?

Land Purchase

- See Handout 2

Land Purchase

- See Handout 2
- How are probabilities obtained?

Land Purchase

- See Handout 2
- How are probabilities obtained?
- How repeatable is this scenario?

