Administration

- Homework \#1 will be posted online today.

Decision Trees

- Decision trees provide a way of organizing decisions

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.
- Work from right to left ("Decision Rollback")

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- - corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.
- Work from right to left ("Decision Rollback")
- Compute expected values of chance nodes

Decision Trees

- Decision trees provide a way of organizing decisions
- \square corresponds to choices.
- \bigcirc corresponds to chance.
- corresponds to final outcome.
- edges correspond to possible outcomes/choices.
- Label percentages and costs on edges.
- Work from right to left ("Decision Rollback")
- Compute expected values of chance nodes
- Compute expected values of decision nodes and eliminate bad choices

Airplane Tickets

- Airline is booking tickets for a flight with 30 seats.

Airplane Tickets

- Airline is booking tickets for a flight with 30 seats.
- 10% chance everyone shows up.
- 60% chance that one person misses the flight.
- 30% chance that two people miss the flight.
- Seats cost $\$ 100$ each.
- Displaced passenger costs airline $\$ 150$.
- Decide whether the airline should sell 30, 31 or 32 tickets.

Airplane Tickets

- Airline is booking tickets for a flight with 30 seats.
- 10% chance everyone shows up.
- 60% chance that one person misses the flight.
- 30% chance that two people miss the flight.
- Seats cost $\$ 100$ each.
- Displaced passenger costs airline $\$ 150$.
- Decide whether the airline should sell 30, 31 or 32 tickets.
- How are probabilities obtained?
- How repeatable is this scenario?

Groat's Disease

- See Handout

Groat's Disease

- See Handout
- How are probabilities obtained?

Groat's Disease

- See Handout
- How are probabilities obtained?
- How repeatable is this scenario?

