Certainty Equivalent

- A choice is risk averse if the outcome is more certain, but has a lower (\leq) expected value.

Certainty Equivalent

- A choice is risk averse if the outcome is more certain, but has a lower (\leq) expected value.
- A game: You get to open one of two doors.
- Between one door is $\$ 1000$.
- Between the other door is $\$ 0$.

Certainty Equivalent

- A choice is risk averse if the outcome is more certain, but has a lower (\leq) expected value.
- A game: You get to open one of two doors.
- Between one door is $\$ 1000$.
- Between the other door is $\$ 0$.
- OR instead of playing, you can take $\$ 500$.

Certainty Equivalent

- What if we change $\$ 500$ to $\$ X$?

Certainty Equivalent

- What if we change $\$ 500$ to $\$ \times$?
- The certainty equivalent is the guaranteed amount of money that an individual would view as equally desirable as a risky asset.

Certainty Equivalent

- What if we change $\$ 500$ to $\$ \times$?
- The certainty equivalent is the guaranteed amount of money that an individual would view as equally desirable as a risky asset.
- What if we change the numbers in the game?

Certainty Equivalent

- What if we change $\$ 500$ to $\$ \times$?
- The certainty equivalent is the guaranteed amount of money that an individual would view as equally desirable as a risky asset.
- What if we change the numbers in the game?
- Behind one door is $\$ 10$.
- Behind the other door is $\$ 0$.

Certainty Equivalent

- What if we change $\$ 500$ to $\$ \times$?
- The certainty equivalent is the guaranteed amount of money that an individual would view as equally desirable as a risky asset.
- What if we change the numbers in the game?
- Behind one door is $\$ 10$.
- Behind the other door is $\$ 0$.
- Does your certainty equivalent change?

Lawsuit

- Your client is being sued.

Lawsuit

- Your client is being sued.
- Trial costs the plaintiff \$10,000.
- There is a 50% chance that the plaintiff will win $\$ 100,000$.
- There is a 30% chance that the plaintiff will win $\$ 20,000$.
- There is a 20% chance that the plaintiff will lose.
- How much should you offer as a settlement?

Recall:

- Consider some experiment.

Recall:

- Consider some experiment.
- An outcome is a possible result of the experiment.

Recall:

- Consider some experiment.
- An outcome is a possible result of the experiment.
- The sample space is the set of all possible outcomes.

Recall:

- Consider some experiment.
- An outcome is a possible result of the experiment.
- The sample space is the set of all possible outcomes.
- An event is some collection of outcomes.

Recall:

- Consider some experiment.
- An outcome is a possible result of the experiment.
- The sample space is the set of all possible outcomes.
- An event is some collection of outcomes.
- The probability of an event is the fraction of times it tends to occur when repeating the experiment many times:

$$
P(A)=\frac{\text { number of times event } A \text { occurs in } N \text { trials }}{\text { number of trials, } N}
$$

when N is large.

Equally Likely Outcomes

- If all outcomes are equally likely, then...

Equally Likely Outcomes

- If all outcomes are equally likely, then...the probability of an event A is

$$
P(A)=\frac{\text { number of outcomes in the event } A}{\text { number of outcomes }}
$$

Equally Likely Outcomes

- If all outcomes are equally likely, then...the probability of an event A is

$$
P(A)=\frac{\text { number of outcomes in the event } A}{\text { number of outcomes }}
$$

- In other words,

$$
P(A)=\frac{\text { number of ways } A \text { can happen }}{\text { number of outcomes }} .
$$

Equally Likely Outcomes

- If all outcomes are equally likely, then...the probability of an event A is

$$
P(A)=\frac{\text { number of outcomes in the event } A}{\text { number of outcomes }} .
$$

- In other words,

$$
P(A)=\frac{\text { number of ways } A \text { can happen }}{\text { number of outcomes }} .
$$

- i.e., the more ways A can happen, the more likely A is to occur.

Events

- Suppose A and B are events for some experiment.

Events

- Suppose A and B are events for some experiment.
- $A \cup B$ (also known as " A or B ") is the event that either A occurs OR B occurs, or both.

Events

- Suppose A and B are events for some experiment.
- $A \cup B$ (also known as " A or B ") is the event that either A occurs OR B occurs, or both.
- $A \cap B$ (also known as " A and B ") is the event that both A AND B occur.

Events

- Suppose A and B are events for some experiment.
- $A \cup B$ (also known as " A or B ") is the event that either A occurs OR B occurs, or both.
- $A \cap B$ (also known as " A and B ") is the event that both A AND B occur.
- A^{c} (also know as " A complement" or the "complementary event to A) is the event that A does NOT occur.

Events

- Suppose A and B are events for some experiment.
- $A \cup B$ (also known as " A or B ") is the event that either A occurs OR B occurs, or both.
- $A \cap B$ (also known as " A and B ") is the event that both A AND B occur.
- A^{c} (also know as " A complement" or the "complementary event to A) is the event that A does NOT occur.
- We can illustrate events using Venn diagrams.

The Impossible Event

- The event consisting of no outcomes at all is denoted \emptyset, called the "impossible event" or "empty event"

The Impossible Event

- The event consisting of no outcomes at all is denoted \emptyset, called the "impossible event" or "empty event"
- For instance, in die rolling, if $A=\{1,2,3\}$ and $B=\{4,5,6\}$, then $A \cap B=\emptyset$.

The Impossible Event

- The event consisting of no outcomes at all is denoted \emptyset, called the "impossible event" or "empty event"
- For instance, in die rolling, if $A=\{1,2,3\}$ and $B=\{4,5,6\}$, then $A \cap B=\emptyset$.
- Two events are said to be mutually exclusive if $A \cap B=\emptyset$.

The Impossible Event

- The event consisting of no outcomes at all is denoted \emptyset, called the "impossible event" or "empty event"
- For instance, in die rolling, if $A=\{1,2,3\}$ and $B=\{4,5,6\}$, then $A \cap B=\emptyset$.
- Two events are said to be mutually exclusive if $A \cap B=\emptyset$.
- The probability of the empty event is zero, since some outcome has to occur: $P(\emptyset)=0$

The Certain Event

- The event consisting of all possible outcomes is called the "certain event" and is the same as the sample space, S.

The Certain Event

- The event consisting of all possible outcomes is called the "certain event" and is the same as the sample space, S.
- The probability of the certain event is one, since some outcome has to occur: $P(S)=1$.

Axioms (Assumptions) of Probability

- Axiom 1: The probability of any event is a nonnegative number.

Axioms (Assumptions) of Probability

- Axiom 1: The probability of any event is a nonnegative number.
- Axiom 2: The certain event S has probability 1 .

Axioms (Assumptions) of Probability

- Axiom 1: The probability of any event is a nonnegative number.
- Axiom 2: The certain event S has probability 1 .
- Axiom 3: If A and B are mutually exclusive events, then

$$
P(A \cup B)=P(A)+P(B)
$$

Axioms (Assumptions) of Probability

- Axiom 1: The probability of any event is a nonnegative number.
- Axiom 2: The certain event S has probability 1 .
- Axiom 3: If A and B are mutually exclusive events, then

$$
P(A \cup B)=P(A)+P(B)
$$

- Note: from these axioms you can deduce that $P(\emptyset)=0$ and the probability of any event is at most 1 .

