Playing Cards

- See the Handout \#3.

From Last Time:

- We also had three axioms of probabilities:

From Last Time:

- We also had three axioms of probabilities:
- Axiom 1: The probability of any event is a nonnegative number.
- Axiom 2: The certain event S has probability 1.

From Last Time:

- We also had three axioms of probabilities:
- Axiom 1: The probability of any event is a nonnegative number.
- Axiom 2: The certain event S has probability 1.
- Axiom 3 (Addition Rule): If A and B are mutually exclusive events, then

$$
P(A \cup B)=P(A)+P(B)
$$

From Last Time:

- We also had three axioms of probabilities:
- Axiom 1: The probability of any event is a nonnegative number.
- Axiom 2: The certain event S has probability 1.
- Axiom 3 (Addition Rule): If A and B are mutually exclusive events, then

$$
P(A \cup B)=P(A)+P(B)
$$

- Draw a Venn diagram for Axiom 3.

Example: The Addition Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.

Example: The Addition Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.
- Let X be the event "the high is between 80 and 89 degrees," and say $P(X)=0.5$.
- Let Y be the event "the high is between 90 and 99 degrees," and say $P(Y)=0.2$.
- Let Z be the event "the high is between 85 and 94 degrees," and say $P(Z)=0.4$.

Example: The Addition Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.
- Let X be the event "the high is between 80 and 89 degrees," and say $P(X)=0.5$.
- Let Y be the event "the high is between 90 and 99 degrees," and say $P(Y)=0.2$.
- Let Z be the event "the high is between 85 and 94 degrees," and say $P(Z)=0.4$.
- What is the probability that the high is between 80 and 99 ?

Example: The Addition Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.
- Let X be the event "the high is between 80 and 89 degrees," and say $P(X)=0.5$.
- Let Y be the event "the high is between 90 and 99 degrees," and say $P(Y)=0.2$.
- Let Z be the event "the high is between 85 and 94 degrees," and say $P(Z)=0.4$.

Example: The Addition Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.
- Let X be the event "the high is between 80 and 89 degrees," and say $P(X)=0.5$.
- Let Y be the event "the high is between 90 and 99 degrees," and say $P(Y)=0.2$.
- Let Z be the event "the high is between 85 and 94 degrees," and say $P(Z)=0.4$.
- What is the probability that the high is between 80 and 94 ?

Inclusion-Exclusion Rule

- Why is $P(A \cup B)$ not equal to $P(A)+P(B)$ in general?

Inclusion-Exclusion Rule

- Why is $P(A \cup B)$ not equal to $P(A)+P(B)$ in general?
- Draw diagram,

Inclusion-Exclusion Rule

- Why is $P(A \cup B)$ not equal to $P(A)+P(B)$ in general?
- Draw diagram, $A \cap B$ is counted twice in $P(A)+P(B)$, so you need to subtract it!

Inclusion-Exclusion Rule

- Why is $P(A \cup B)$ not equal to $P(A)+P(B)$ in general?
- Draw diagram, $A \cap B$ is counted twice in $P(A)+P(B)$, so you need to subtract it!

Inclusion-Exclusion Rule
If A and B are events (not necessarily mutually exclusive), then

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Inclusion-Exclusion Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.
- Let X be the event "the high is between 80 and 89 degrees," and say $P(X)=0.5$.
- Let Y be the event "the high is between 90 and 99 degrees," and say $P(Y)=0.2$.
- Let Z be the event "the high is between 85 and 94 degrees," and say $P(Z)=0.4$.
- Let W be the event "the high is between 85 and 89 degrees," and say $P(W)=0.2$.

Inclusion-Exclusion Rule

- Let the experiment be checking the high temperature on a randomly chosen day in July.
- Let X be the event "the high is between 80 and 89 degrees," and say $P(X)=0.5$.
- Let Y be the event "the high is between 90 and 99 degrees," and say $P(Y)=0.2$.
- Let Z be the event "the high is between 85 and 94 degrees," and say $P(Z)=0.4$.
- Let W be the event "the high is between 85 and 89 degrees," and say $P(W)=0.2$.
- What is the probability that the high is between 80 and 94 ?

Example: Sickness

- Suppose the Center for Disease Control (CDC) predicts a 50% chance that an individual will contract a cold in the next year, and a 20% chance that an invidual will contract the flu.

Example: Sickness

- Suppose the Center for Disease Control (CDC) predicts a 50% chance that an individual will contract a cold in the next year, and a 20% chance that an invidual will contract the flu.
- Suppose the CDC also predicts a 15% chance of a person contracting both a cold AND the flu.

Example: Sickness

- Suppose the Center for Disease Control (CDC) predicts a 50\% chance that an individual will contract a cold in the next year, and a 20% chance that an invidual will contract the flu.
- Suppose the CDC also predicts a 15% chance of a person contracting both a cold AND the flu.
- Find the probability of an individual contracting a cold OR the flu.

Example: Sickness

- Suppose the Center for Disease Control (CDC) predicts a 50% chance that an individual will contract a cold in the next year, and a 20% chance that an invidual will contract the flu.
- Suppose the CDC also predicts a 15% chance of a person contracting both a cold AND the flu.
- Find the probability of an individual contracting a cold OR the flu.
- Note: in this example, to find $P(C \cup F)$, we needed to know not just $P(C)$ and $P(F)$, but also $P(C \cap F)$.

Rules of Probability

- Using the axioms, one can deduce some more rules of probabilities.

Impossible Event Rule
$P(\emptyset)=$

Rules of Probability

- Using the axioms, one can deduce some more rules of probabilities.

Impossible Event Rule
$P(\emptyset)=0$. That is, the probability of the impossible event is zero.

Rules of Probability

- Using the axioms, one can deduce some more rules of probabilities.

Impossible Event Rule
$P(\emptyset)=0$. That is, the probability of the impossible event is zero.
General Addition Rule:
If $E_{1}, E_{2}, \ldots E_{n}$ are mutually exclusive events (meaning $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), then

$$
P(E)=
$$

Rules of Probability

- Using the axioms, one can deduce some more rules of probabilities.

Impossible Event Rule
$P(\emptyset)=0$. That is, the probability of the impossible event is zero.
General Addition Rule:
If $E_{1}, E_{2}, \ldots E_{n}$ are mutually exclusive events (meaning $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), then

$$
P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{n}\right)
$$

where $E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}$ is the event that at least one of the E_{i} occurs.

Rules of Probability

Subset Rule
If A and B are events such that every outcome in A is also in B, then:

Rules of Probability

Subset Rule

If A and B are events such that every outcome in A is also in B, then: $P(A) \leq P(B)$

- The idea: more ways B can occur, so B is more likely. Draw diagram.

