Rules of Probability

- Addition Rule: If $E_{1}, E_{2}, \ldots E_{n}$ are mutually exclusive events (meaning $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), let

$$
E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}
$$

be the event that at least one of the E_{i} occurs. Then

$$
P(E)=
$$

Rules of Probability

- Addition Rule: If $E_{1}, E_{2}, \ldots E_{n}$ are mutually exclusive events (meaning $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), let

$$
E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}
$$

be the event that at least one of the E_{i} occurs. Then

$$
P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{n}\right)
$$

Rules of Probability

- Addition Rule: If $E_{1}, E_{2}, \ldots E_{n}$ are mutually exclusive events (meaning $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), let

$$
E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}
$$

be the event that at least one of the E_{i} occurs. Then

$$
P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{n}\right)
$$

- Inclusion-Exclusion Rule: For any events A and B,

$$
P(A \cup B)=
$$

Rules of Probability

- Addition Rule: If $E_{1}, E_{2}, \ldots E_{n}$ are mutually exclusive events (meaning $E_{i} \cap E_{j}=\emptyset$ for all $i \neq j$), let

$$
E=E_{1} \cup E_{2} \cup \ldots \cup E_{n}
$$

be the event that at least one of the E_{i} occurs. Then

$$
P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{n}\right)
$$

- Inclusion-Exclusion Rule: For any events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Rules of Probability

- Subset Rule: If A and B are events such that every outcome in A is also in B, then $P(A) \leq P(B)$

Rules of Probability

- Subset Rule: If A and B are events such that every outcome in A is also in B, then $P(A) \leq P(B)$
- Complement Rule: Let A be an event, and let A^{c} be its complementary event. Then

$$
P\left(A^{c}\right)=
$$

Rules of Probability

- Subset Rule: If A and B are events such that every outcome in A is also in B, then $P(A) \leq P(B)$
- Complement Rule: Let A be an event, and let A^{c} be its complementary event. Then

$$
P\left(A^{c}\right)=1-P(A) .
$$

Rules of Probability

- Subset Rule: If A and B are events such that every outcome in A is also in B, then $P(A) \leq P(B)$
- Complement Rule: Let A be an event, and let A^{c} be its complementary event. Then

$$
P\left(A^{c}\right)=1-P(A) .
$$

Equivalently,

$$
P(A)=1-P\left(A^{c}\right)
$$

Example: Rolling Two Dice

- Consider an experiment where you roll two dice. Notation $(3,4)$ means that the first die shows a 3 and the second shows a 4 , etc.

Example: Rolling Two Dice

- Consider an experiment where you roll two dice. Notation $(3,4)$ means that the first die shows a 3 and the second shows a 4 , etc.
- How many outcomes are there? (Draw a tree, make a table, etc.)

Example: Rolling Two Dice

- Consider an experiment where you roll two dice. Notation $(3,4)$ means that the first die shows a 3 and the second shows a 4 , etc.
- How many outcomes are there? (Draw a tree, make a table, etc.)
- Here's the sample space:

$$
S=\begin{array}{cccccc}
\{(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)\}
\end{array}
$$

Example: Rolling Two Dice

- Consider an experiment where you roll two dice. Notation $(3,4)$ means that the first die shows a 3 and the second shows a 4 , etc.
- How many outcomes are there? (Draw a tree, make a table, etc.)
- Here's the sample space:

$$
S=\begin{array}{cccccc}
\{(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)\}
\end{array}
$$

- 36 outcomes

Example: Rolling Two Dice

- Let A_{7} be the event that the sum of the numbers showing on the dice is seven. What is $P\left(A_{7}\right)$?

Example: Rolling Two Dice

- Let A_{7} be the event that the sum of the numbers showing on the dice is seven. What is $P\left(A_{7}\right)$?
Event A_{7} can happen in six ways.

$$
A_{7}=\begin{array}{llllll}
\left.\begin{array}{ll}
\{(1,1) & (1,2) \\
(2,1) & (1,3) \\
\hline & (1,4) \\
(3,2) & (1,5) \\
(3,1) & (3,2) \\
(3,3) & (2,4) \\
(2,5) & (1,6) \\
(4,1) & (4,2) \\
(4,3) & (3,4) \\
(3,5) & (3,4) \\
(4,6) & (3,6) \\
(5,1) & (5,2) \\
(5,3) & (5,4) \\
(5,5) & (4,6) \\
(6,1) & (6,2) \\
(6,3) & (6,4) \\
(6,5) & (5,6) \\
(6,6)\}
\end{array}, \begin{array}{ll}
(6,5) & (6,
\end{array}\right)
\end{array}
$$

Example: Rolling Two Dice

- Let A_{7} be the event that the sum of the numbers showing on the dice is seven. What is $P\left(A_{7}\right)$?
Event A_{7} can happen in six ways.

$$
A_{7}=\begin{array}{llllll}
\{(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)\}
\end{array}
$$

- Let A_{k} be the event that you roll k. What is $P\left(A_{k}\right)$?

Example: Flipping a Coin Ten Times

- Consider the experiment where we toss a coin ten times.

Example: Flipping a Coin Ten Times

- Consider the experiment where we toss a coin ten times.
- For instance, here is an outcome: HTHTTHHTTT

Example: Flipping a Coin Ten Times

- Consider the experiment where we toss a coin ten times.
- For instance, here is an outcome: HTHTTHHTTT
- How many outcomes are there?

Example: Flipping a Coin Ten Times

- Consider the experiment where we toss a coin ten times.
- For instance, here is an outcome: HTHTTHHTTT
- How many outcomes are there?
- In three tosses, there are $2 \times 2 \times 2$ possible outcomes, etc...

Example: Flipping a Coin Ten Times

- Consider the experiment where we toss a coin ten times.
- For instance, here is an outcome: HTHTTHHTTT
- How many outcomes are there?
- In three tosses, there are $2 \times 2 \times 2$ possible outcomes, etc...
- In ten tosses, there are $\underbrace{2 \times 2 \times \ldots \times 2}_{\text {ten times }}=2^{10}=1024$ possible outcomes.

Example: Flipping a Coin Ten Times

- Let A be the event that at least one H appears in the ten coin flips. What is $P(A)$?

Example: Flipping a Coin Ten Times

- Let A be the event that at least one H appears in the ten coin flips. What is $P(A)$?
- Instead, look at A^{c}, the complementary event.

Example: Flipping a Coin Ten Times

- Let A be the event that at least one H appears in the ten coin flips. What is $P(A)$?
- Instead, look at A^{c}, the complementary event.
- A^{c} consists of scenarios in which no heads appear.

Example: Flipping a Coin Ten Times

- Let A be the event that at least one H appears in the ten coin flips. What is $P(A)$?
- Instead, look at A^{c}, the complementary event.
- A^{c} consists of scenarios in which no heads appear.
- $A^{c}=\{$ TTTTTTTTTT $\}$, so $P\left(A^{c}\right)=\frac{1}{1024}$.

Example: Flipping a Coin Ten Times

- Let A be the event that at least one H appears in the ten coin flips. What is $P(A)$?
- Instead, look at A^{c}, the complementary event.
- A^{c} consists of scenarios in which no heads appear.
- $A^{c}=\{$ TTTTTTTTTTT $\}$, so $P\left(A^{c}\right)=\frac{1}{1024}$.
- By the complement rule,

$$
P(A)=1-P\left(A^{c}\right)=1-\frac{1}{1024}=\frac{1023}{1024} \approx 0.999 .
$$

Example: Flipping a Coin Ten Times

- Let B be the event that at least two T 's appear in the ten coin flips. What is $P(B)$?

Example: Flipping a Coin Ten Times

- Let B be the event that at least two T 's appear in the ten coin flips. What is $P(B)$?
- What is B^{c} ?

Example: Flipping a Coin Ten Times

- Let B be the event that at least two T 's appear in the ten coin flips. What is $P(B)$?
- What is B^{c} ?
- B^{c} is the event that T shows up at most once, so
 ННННННТ ННН, ННННН ТНННН, ННННТННННН, ННН Т НННННН, ННТ ННННННН, НТ НННННННН, Т ННННННННН, НННННННННН \}

Example: Flipping a Coin Ten Times

- Let B be the event that at least two T 's appear in the ten coin flips. What is $P(B)$?
- What is B^{c} ?
- B^{c} is the event that T shows up at most once, so
 ННННННТ ННН, ННННН ТНННН, ННННТННННН, ННН Т НННННН, ННТ ННННННН, НТНННННННН, Т ННННННННН, НННННННННН \}
- B^{c} has eleven outcomes, so $P\left(B^{c}\right)=\frac{11}{1024}$.

Example: Flipping a Coin Ten Times

- Let B be the event that at least two T 's appear in the ten coin flips. What is $P(B)$?
- What is B^{c} ?
- B^{c} is the event that T shows up at most once, so ННННННТ ННН, НННННТ НННН, ННННТ ННННН, НННТ НННННН, ННТ ННННННН, НТНННННННН, Т ННННННННН, НННННННННН \}
- B^{c} has eleven outcomes, so $P\left(B^{c}\right)=\frac{11}{1024}$.
- By the complement rule, $P(B)=1-P\left(B^{c}\right)=\frac{1013}{1024} \approx 0.989$

Birthdays

- Consider the experiment of asking the birthday of a randomly chosen individual.

Birthdays

- Consider the experiment of asking the birthday of a randomly chosen individual.
- Assume each of the 365 dates in a year are equally likely to be someone's birthday. (Ignore Feb. 29th)

Birthdays

- Consider the experiment of asking the birthday of a randomly chosen individual.
- Assume each of the 365 dates in a year are equally likely to be someone's birthday. (Ignore Feb. 29th)
- Let Y be the event that the person's birthday is your own.

Birthdays

- Consider the experiment of asking the birthday of a randomly chosen individual.
- Assume each of the 365 dates in a year are equally likely to be someone's birthday. (Ignore Feb. 29th)
- Let Y be the event that the person's birthday is your own.
- Then $P(Y)=\frac{\text { number of ways the person's birthday can be yours }}{\text { number of possible birthdays }}=$

Birthdays

- Consider the experiment of asking the birthday of a randomly chosen individual.
- Assume each of the 365 dates in a year are equally likely to be someone's birthday. (Ignore Feb. 29th)
- Let Y be the event that the person's birthday is your own.
- Then $P(Y)=\frac{\text { number of ways the person's birthday can be yours }}{\text { number of possible birthdays }}=\frac{1}{365}$.

Birthday "Paradox"

- Experiment: put n randomly chosen people in a room and ask them their birthdays.

Birthday "Paradox"

- Experiment: put n randomly chosen people in a room and ask them their birthdays.
- Let A be the event that at least two of them have the same birthday. Questions:

Birthday "Paradox"

- Experiment: put n randomly chosen people in a room and ask them their birthdays.
- Let A be the event that at least two of them have the same birthday. Questions:
- What is $P(A)$? (answer will depend on n)

Birthday "Paradox"

- Experiment: put n randomly chosen people in a room and ask them their birthdays.
- Let A be the event that at least two of them have the same birthday. Questions:
- What is $P(A)$? (answer will depend on n)
- How big does n need to be for $P(A)$ to exceed 50% (0.5)?

Birthday "Paradox"

- Experiment: put n randomly chosen people in a room and ask them their birthdays.
- Let A be the event that at least two of them have the same birthday. Questions:
- What is $P(A)$? (answer will depend on n)
- How big does n need to be for $P(A)$ to exceed $50 \%(0.5)$?
- Observe A^{c} is the event that all n people have distinct birthdays. Find $P\left(A^{c}\right)$ first.

Birthday "Paradox"

- To find $P\left(A^{c}\right)$ we need to know:
- the number of outcomes
- the number of ways A^{c} can happen.

Birthday "Paradox"

- To find $P\left(A^{c}\right)$ we need to know:
- the number of outcomes
- the number of ways A^{c} can happen.
- Let's say $n=5$ (five people).

Birthday "Paradox"

- To find $P\left(A^{c}\right)$ we need to know:
- the number of outcomes
- the number of ways A^{c} can happen.
- Let's say $n=5$ (five people).
- Determine the number of outcomes.

Birthday "Paradox"

- To find $P\left(A^{c}\right)$ we need to know:
- the number of outcomes
- the number of ways A^{c} can happen.
- Let's say $n=5$ (five people).
- Determine the number of outcomes.
- Determine the number of ways A^{c} can happen (all distinct birthdays)

Birthday "Paradox"

- For n people, number outcomes $=$ number of ways n people can have their birthdays $=365^{n}$.

Birthday "Paradox"

- For n people, number outcomes $=$ number of ways n people can have their birthdays $=365^{n}$.
- Number of ways n people can have distinct birthdays is: $365 \cdot 364 \cdots(365-n+1)$.

Birthday "Paradox"

- For n people, number outcomes $=$ number of ways n people can have their birthdays $=365^{n}$.
- Number of ways n people can have distinct birthdays is: $365 \cdot 364 \cdots(365-n+1)$.
- Then $P\left(A^{c}\right)=\frac{365 \cdot 364 \cdots(365-n+1)}{365^{n}}$.

Birthday "Paradox"

- For n people, number outcomes $=$ number of ways n people can have their birthdays $=365^{n}$.
- Number of ways n people can have distinct birthdays is: $365 \cdot 364 \cdots(365-n+1)$.
- Then $P\left(A^{c}\right)=\frac{365 \cdot 364 \cdots(365-n+1)}{365^{n}}$.
- By complement rule, $P(A)=1-P\left(A^{c}\right)$. For instance:

n	10	20	22	23	30	40	50
$\mathrm{P}(\mathrm{A})$	0.117	0.411	0.476	0.507	0.706	0.891	0.970

Birthday "Paradox"

- For n people, number outcomes $=$ number of ways n people can have their birthdays $=365^{n}$.
- Number of ways n people can have distinct birthdays is: $365 \cdot 364 \cdots(365-n+1)$.
- Then $P\left(A^{c}\right)=\frac{365 \cdot 364 \cdots(365-n+1)}{365^{n}}$.
- By complement rule, $P(A)=1-P\left(A^{c}\right)$. For instance:

n	10	20	22	23	30	40	50
$\mathrm{P}(\mathrm{A})$	0.117	0.411	0.476	0.507	0.706	0.891	0.970

- When 23 people are chosen randomly, there is a better than 50% chance that at least two of them share a birthday!

The Fifty-Fifty Fallacy

The following statement is false.
The fifty-fifty fallacy
If there are two possible outcomes for an experiment, then each outcome has a probability of 50%.

Here are some counterexamples:

The Fifty-Fifty Fallacy

The following statement is false.
The fifty-fifty fallacy
If there are two possible outcomes for an experiment, then each outcome has a probability of 50%.
Here are some counterexamples:

- If I buy a lottery ticket, I can either win or lose (but the two are not equally likely).

The Fifty-Fifty Fallacy

The following statement is false.
The fifty-fifty fallacy
If there are two possible outcomes for an experiment, then each outcome has a probability of 50%.

Here are some counterexamples:

- If I buy a lottery ticket, I can either win or lose (but the two are not equally likely).
- You can either pass or a fail a class (hopefully not equally likely).

The Fifty-Fifty Fallacy

The following statement is false.
The fifty-fifty fallacy
If there are two possible outcomes for an experiment, then each outcome has a probability of 50%.

Here are some counterexamples:

- If I buy a lottery ticket, I can either win or lose (but the two are not equally likely).
- You can either pass or a fail a class (hopefully not equally likely).
- Will the Large Hadron Collider destroy the world?

The Fifty-Fifty Fallacy

The following statement is false.
The fifty-fifty fallacy
If there are two possible outcomes for an experiment, then each outcome has a probability of 50%.
Here are some counterexamples:

- If I buy a lottery ticket, I can either win or lose (but the two are not equally likely).
- You can either pass or a fail a class (hopefully not equally likely).
- Will the Large Hadron Collider destroy the world?
- Daily Show interviewee: the chance of the LHC destroying the Earth is 50%, since it will either happen or it won't.

Friendship Paradox

- In 1991 S.L. Feld (a sociologist) wrote a paper "Why Your Friends Have More Friends than you Do."

Friendship Paradox

- In 1991 S.L. Feld (a sociologist) wrote a paper "Why Your Friends Have More Friends than you Do."
- One interpretation is that you are more likely to be friends with someone who already has many friends...

Friendship Paradox

- In 1991 S.L. Feld (a sociologist) wrote a paper "Why Your Friends Have More Friends than you Do."
- One interpretation is that you are more likely to be friends with someone who already has many friends...
- ... and less likely to be friends with someone who has few friends.

