Friendship Paradox

- Take a group of people. For each person, consider the numbers:
- number of friends the person has,
- average number of friends that friends of the person has.

Friendship Paradox

- Take a group of people. For each person, consider the numbers:
- number of friends the person has,
- average number of friends that friends of the person has.
- For most people, the second number is at least as large as the first.

Friendship Paradox

- Take a group of people. For each person, consider the numbers:
- number of friends the person has,
- average number of friends that friends of the person has.
- For most people, the second number is at least as large as the first.
- You're more likely to be friends with someone with a lot of friends...

Friendship Paradox

- Take a group of people. For each person, consider the numbers:
- number of friends the person has,
- average number of friends that friends of the person has.
- For most people, the second number is at least as large as the first.
- You're more likely to be friends with someone with a lot of friends...
- and less likely to be friends with someone with few friends.

Friendship Paradox

- Take a group of people. For each person, consider the numbers:
- number of friends the person has,
- average number of friends that friends of the person has.
- For most people, the second number is at least as large as the first.
- You're more likely to be friends with someone with a lot of friends...
- and less likely to be friends with someone with few friends.
- Average Facebook user has 245 friends. Average friend on Facebook has 359 friends.

Friendship Paradox

- Take a group of people. For each person, consider the numbers:
- number of friends the person has,
- average number of friends that friends of the person has.
- For most people, the second number is at least as large as the first.
- You're more likely to be friends with someone with a lot of friends...
- and less likely to be friends with someone with few friends.
- Average Facebook user has 245 friends. Average friend on Facebook has 359 friends.
- "Everyone you follow or who follows you has more friends and followers than you" holds for $>98 \%$ of Twitter users.

Coins and Dice

- Suppose you do an experiment where you flip a coin and roll a die.

Coins and Dice

- Suppose you do an experiment where you flip a coin and roll a die.
- T3 is a sample outcome.

Coins and Dice

- Suppose you do an experiment where you flip a coin and roll a die.
- T3 is a sample outcome.
- Sample space is:
$\{H 1, H 2, H 3, H 4, H 5, H 6, T 1, T 2, T 3, T 4, T 5, T 6\}$

Coins and Dice

- Suppose you do an experiment where you flip a coin and roll a die.
- T3 is a sample outcome.
- Sample space is:
$\{H 1, H 2, H 3, H 4, H 5, H 6, T 1, T 2, T 3, T 4, T 5, T 6\}$
- Let $A=\{$ coin shows heads $\}$. Let $B=\{$ die shows 3$\}$.

Coins and Dice

- Suppose you do an experiment where you flip a coin and roll a die.
- T3 is a sample outcome.
- Sample space is:
$\{H 1, H 2, H 3, H 4, H 5, H 6, T 1, T 2, T 3, T 4, T 5, T 6\}$
- Let $A=\{$ coin shows heads $\}$. Let $B=\{$ die shows 3$\}$.
- If you know A occurs, does it affect the probability of B ?

Independent Events

Definition

In an experiment, events A and B are independent if knowledge that A occurs does not affect the probability that B occurs.

Examples

- Let C be the event that it will be cloudy tomorrow, and let R be the event that it will rain tomorrow.

Examples

- Let C be the event that it will be cloudy tomorrow, and let R be the event that it will rain tomorrow.
- Knowing C makes R more likely. Knowing R makes C more likely as well.

Examples

- Let C be the event that it will be cloudy tomorrow, and let R be the event that it will rain tomorrow.
- Knowing C makes R more likely. Knowing R makes C more likely as well.
- Flip a coin twice. Let $A=\{$ heads on first flip $\}$, and $B=\{$ tails on second flip\}.

Examples

- Let C be the event that it will be cloudy tomorrow, and let R be the event that it will rain tomorrow.
- Knowing C makes R more likely. Knowing R makes C more likely as well.
- Flip a coin twice. Let $A=\{$ heads on first flip $\}$, and $B=\{$ tails on second flip\}.
- A and B are independent.

Examples

- Let C be the event that it will be cloudy tomorrow, and let R be the event that it will rain tomorrow.
- Knowing C makes R more likely. Knowing R makes C more likely as well.
- Flip a coin twice. Let $A=\{$ heads on first flip $\}$, and $B=\{$ tails on second flip\}.
- A and B are independent.
- Randomly select a person. Let $H=\{$ person has heart disease $\}$, and let $T=\{$ person is under age 30$\}$.

Examples

- Let C be the event that it will be cloudy tomorrow, and let R be the event that it will rain tomorrow.
- Knowing C makes R more likely. Knowing R makes C more likely as well.
- Flip a coin twice. Let $A=\{$ heads on first flip $\}$, and $B=\{$ tails on second flip\}.
- A and B are independent.
- Randomly select a person. Let $H=\{$ person has heart disease $\}$, and let $T=\{$ person is under age 30\}.
- Knowing H makes T less likely; knowing T makes H less likely.

Independent Events

- Take a randomly selected person from the U.S.

Independent Events

- Take a randomly selected person from the U.S.
- Say P (is female) $=0.515$, and
- $P($ green eyes $)=\frac{1}{8}$.

Independent Events

- Take a randomly selected person from the U.S.
- Say $P($ is female $)=0.515$, and
- $P($ green eyes $)=\frac{1}{8}$.
- Assume these events are independent.

Independent Events

- Take a randomly selected person from the U.S.
- Say P (is female) $=0.515$, and
- $P($ green eyes $)=\frac{1}{8}$.
- Assume these events are independent.
- How likely is it that a person is female AND has green eyes?

Independent Events

- Take a randomly selected person from the U.S.
- Say $P($ is female $)=0.515$, and
- $P($ green eyes $)=\frac{1}{8}$.
- Assume these events are independent.
- How likely is it that a person is female AND has green eyes?
- Presumably the answer is $\frac{1}{8} \times 0.515$, which is ≈ 0.065.

Multiplication Rule for Independent Events

Multiplication Rule for Independent Events
If A and B are independent events, then

$$
P(A \cap B)=P(A) \cdot P(B)
$$

Multiplication Rule for Independent Events

Multiplication Rule for Independent Events
If A and B are independent events, then

$$
P(A \cap B)=P(A) \cdot P(B)
$$

WARNING: independent events are different than mutually exclusive events!

Cards

- Draw a card at random from a standard deck (then replace it and shuffle).

Cards

- Draw a card at random from a standard deck (then replace it and shuffle).
- Repeat once.

Cards

- Draw a card at random from a standard deck (then replace it and shuffle).
- Repeat once.
- What is probability that both cards are spades?

Cards

- Draw a card at random from a standard deck (then replace it and shuffle).
- Repeat once.
- What is probability that both cards are spades?
- What is the probability that both cards are the same suit?

Winning the Lottery Twice!

- Say the probability that a lottery ticket wins a $\$ 1$ million jackpot is $\frac{1}{1,000,000}$.

Winning the Lottery Twice!

- Say the probability that a lottery ticket wins a $\$ 1$ million jackpot is $\frac{1}{1,000,000}$.
- Buy two tickets (spaced months apart, say). What is probability of both being winners?

Winning the Lottery Twice!

- Say the probability that a lottery ticket wins a $\$ 1$ million jackpot is $\frac{1}{1,000,000}$.
- Buy two tickets (spaced months apart, say). What is probability of both being winners?
- Incredibly unlikely- but it happened to Ernest Pullen.

Reading: Ernest Pullen

- Why might it be reasonable to expect multiple lottery winners:

Reading: Ernest Pullen

- Why might it be reasonable to expect multiple lottery winners:
- Question is: what are chances that SOMEONE wins twice, not that YOU win twice.

Reading: Ernest Pullen

- Why might it be reasonable to expect multiple lottery winners:
- Question is: what are chances that SOMEONE wins twice, not that YOU win twice.
- People might buy more than one ticket.

Reading: Ernest Pullen

- Why might it be reasonable to expect multiple lottery winners:
- Question is: what are chances that SOMEONE wins twice, not that YOU win twice.
- People might buy more than one ticket.
- Pullen may have used $\$ 100,000$ s of his first winnings to buy more tickets

Reading: Ernest Pullen

- Why might it be reasonable to expect multiple lottery winners:
- Question is: what are chances that SOMEONE wins twice, not that YOU win twice.
- People might buy more than one ticket.
- Pullen may have used $\$ 100,000$ s of his first winnings to buy more tickets
- Lottery spokesman, on likelihood of winning twice: "Because they're independent games, it is impossible to calculate the odds." Anything wrong with this?

DNA Evidence

- Criminal trial. Defendant's DNA matches blood at crime scene.

DNA Evidence

- Criminal trial. Defendant's DNA matches blood at crime scene.
- Say $P(\{$ accidental match $\})=\frac{1}{100,000,000}$.

DNA Evidence

- Criminal trial. Defendant's DNA matches blood at crime scene.
- Say $P(\{$ accidental match $\})=\frac{1}{100,000,000}$.
- Many experts: $P(\{$ laboratory error $\})=\frac{1}{100}$.

DNA Evidence

- Criminal trial. Defendant's DNA matches blood at crime scene.
- Say $P(\{$ accidental match $\})=\frac{1}{100,000,000}$.
- Many experts: $P(\{$ laboratory error $\})=\frac{1}{100}$.
- Jury is interested in...

DNA Evidence

- Criminal trial. Defendant's DNA matches blood at crime scene.
- Say $P(\{$ accidental match $\})=\frac{1}{100,000,000}$.
- Many experts: $P(\{$ laboratory error $\})=\frac{1}{100}$.
- Jury is interested in...
$P(\{$ accidental match $\} O R\{$ laboratory error $\})$

DNA Evidence

- Criminal trial. Defendant's DNA matches blood at crime scene.
- Say $P(\{$ accidental match $\})=\frac{1}{100,000,000}$.
- Many experts: $P(\{$ laboratory error $\})=\frac{1}{100}$.
- Jury is interested in...
$P(\{$ accidental match $\} O R\{$ laboratory error $\})=\frac{100,000,099}{100,000,000,000}$.

Be Careful Multiplying Probabilities

- Look at the eye color of a randomly selected person in the U.S.

Be Careful Multiplying Probabilities

- Look at the eye color of a randomly selected person in the U.S.
- Say P (left eye is green $)=0.12$, and

Be Careful Multiplying Probabilities

- Look at the eye color of a randomly selected person in the U.S.
- Say P (left eye is green) $=0.12$, and
- $P($ right eye is green $)=0.12$

Be Careful Multiplying Probabilities

- Look at the eye color of a randomly selected person in the U.S.
- Say $P($ left eye is green $)=0.12$, and
- $P($ right eye is green $)=0.12$
- What is P (left and right eye are green)?

Be Careful Multiplying Probabilities

- Look at the eye color of a randomly selected person in the U.S.
- Say $P($ left eye is green $)=0.12$, and
- $P($ right eye is green $)=0.12$
- What is P (left and right eye are green)?
- NOT 0.0144.

Be Careful Multiplying Probabilities

- Look at the eye color of a randomly selected person in the U.S.
- Say $P($ left eye is green $)=0.12$, and
- $P($ right eye is green $)=0.12$
- What is P (left and right eye are green)?
- NOT 0.0144.
- Close to 0.12 .

