Conditional Probability

- Let A and B be events. $P(A \mid B)$ means "the probability of A, given $B^{\prime \prime}$

Conditional Probability

- Let A and B be events. $P(A \mid B)$ means "the probability of A, given $B^{\prime \prime}$
- We want to know how likely A is when we restrict the sample space to events in B :

Conditional Probability

- Let A and B be events. $P(A \mid B)$ means "the probability of A, given $B^{\prime \prime}$
- We want to know how likely A is when we restrict the sample space to events in B :

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

A Game

- At the count of three, you and a friend each stick out (at random) one, two, three, four, or five fingers.

A Game

- At the count of three, you and a friend each stick out (at random) one, two, three, four, or five fingers.
- Let A be the event that the sum is even. What is $P(B)$?

A Game

- At the count of three, you and a friend each stick out (at random) one, two, three, four, or five fingers.
- Let A be the event that the sum is even. What is $P(B)$?
- Let B be the event that you stick out two fingers. What is $P(B)$?

A Game

- At the count of three, you and a friend each stick out (at random) one, two, three, four, or five fingers.
- Let A be the event that the sum is even. What is $P(B)$?
- Let B be the event that you stick out two fingers. What is $P(B)$?
- $P(A \mid B)$ is ???

A Game

- At the count of three, you and a friend each stick out (at random) one, two, three, four, or five fingers.
- Let A be the event that the sum is even. What is $P(B)$?
- Let B be the event that you stick out two fingers. What is $P(B)$?
- $P(A \mid B)$ is ???
- $P(B \mid A)$ is ???

Genetic Markers

- 3% of the population carries the genetic marker for a certain cancer (Cancer A).
- 25% of the people that carry the genetic marker for Cancer A also carry the genetic marker for Cancer B.

Genetic Markers

- 3\% of the population carries the genetic marker for a certain cancer (Cancer A).
- 25% of the people that carry the genetic marker for Cancer A also carry the genetic marker for Cancer B.
- What percent of the population carry the genetic markers for both Cancers A and B ?

Genetic Markers

- 3% of the population carries the genetic marker for a certain cancer (Cancer A).
- 25% of the people that carry the genetic marker for Cancer A also carry the genetic marker for Cancer B.
- What percent of the population carry the genetic markers for both Cancers A and B ?
- Do we know what percent of the population carries the genetic marker for Cancer B?

Testing for a Disease

- Consider a disease that affects $\frac{1}{1000}$ people.

Testing for a Disease

- Consider a disease that affects $\frac{1}{1000}$ people.
- A test produces the results:
- 99% of infected people test positive.
"The test is 99% positive"
- 2% of uninfected people also test positive.

Testing for a Disease

- Consider a disease that affects $\frac{1}{1000}$ people.
- A test produces the results:
- 99% of infected people test positive.
"The test is 99% positive"
- 2% of uninfected people also test positive.
- If you test positive, how likely is it that you have the disease?

Testing for a Disease

- The population consists of four groups:
- True Positive: diseased people that test positive.
- True Negative: healthy people that test negative.
- False Positive: healthy people that test positive.
- False Negative: diseased people that test negative.

Testing for a Disease

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.

Testing for a Disease

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:

Testing for a Disease

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$

Testing for a Disease

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$
- We want to know:

Testing for a Disease

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$
- We want to know:
- $P(D \mid T)$

Testing for a Disease

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Testing for a Disease

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- Bayes' Formlua 2 :

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P\left(B \mid A^{c}\right) \cdot P\left(A^{c}\right)}
$$

Bayes' Formula

$$
P(D \mid T)=\frac{P(T \mid D) \cdot P(D)}{P(T \mid D) \cdot P(D)+P\left(T \mid D^{c}\right) \cdot P\left(D^{c}\right)}
$$

Bayes' Formula

$$
\begin{aligned}
P(D \mid T)= & \frac{P(T \mid D) \cdot P(D)}{P(T \mid D) \cdot P(D)+P\left(T \mid D^{c}\right) \cdot P\left(D^{c}\right)} \\
& =\frac{.99 \cdot .001}{.99 \cdot .001+.02 \cdot .999}
\end{aligned}
$$

Bayes' Formula

$$
\begin{gathered}
P(D \mid T)=\frac{P(T \mid D) \cdot P(D)}{P(T \mid D) \cdot P(D)+P\left(T \mid D^{c}\right) \cdot P\left(D^{c}\right)} \\
=\frac{.99 \cdot .001}{.99 \cdot .001+.02 \cdot .999} \\
=.047
\end{gathered}
$$

Bayes' Formula

$$
\begin{gathered}
P(D \mid T)=\frac{P(T \mid D) \cdot P(D)}{P(T \mid D) \cdot P(D)+P\left(T \mid D^{c}\right) \cdot P\left(D^{c}\right)} \\
=\frac{.99 \cdot .001}{.99 \cdot .001+.02 \cdot .999} \\
=.047
\end{gathered}
$$

So if you test positive for the disease, you have a 4.7% chance of having the disease.

