Conditional Probability

- $P(A \mid B)$ means "the probability of A, given B "

Conditional Probability

- $P(A \mid B)$ means "the probability of A, given B "
- $P(A \mid B), P(B \mid A)$ and $P(A \cap B)$ all measure the same events.

Conditional Probability

- $P(A \mid B)$ means "the probability of A, given B "
- $P(A \mid B), P(B \mid A)$ and $P(A \cap B)$ all measure the same events.
- For $P(A \cap B)$ the sample space is the original sample space.

Conditional Probability

- $P(A \mid B)$ means "the probability of A, given B "
- $P(A \mid B), P(B \mid A)$ and $P(A \cap B)$ all measure the same events.
- For $P(A \cap B)$ the sample space is the original sample space.
- For $P(A \mid B)$ the sample space is B.

Conditional Probability

- $P(A \mid B)$ means "the probability of A, given B "
- $P(A \mid B), P(B \mid A)$ and $P(A \cap B)$ all measure the same events.
- For $P(A \cap B)$ the sample space is the original sample space.
- For $P(A \mid B)$ the sample space is B.
- For $P(B \mid A)$ the sample space is A.

Life Expectancy

- Suppose that someone who is currently 20 has a 15% chance that they will live to be 90

Life Expectancy

- Suppose that someone who is currently 20 has a 15% chance that they will live to be 90
- And a 1% chance that they will live to be 100 .

Life Expectancy

- Suppose that someone who is currently 20 has a 15% chance that they will live to be 90
- And a 1% chance that they will live to be 100 .
- What is the probability that someone who lives to be 90 will live to be 100 ?

Bayes' Formula

- Have that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

Bayes' Formula

- Have that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
- So $P(A \mid B) \cdot P(B)=P(A \cap B)$

Bayes' Formula

- Have that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
- So $P(A \mid B) \cdot P(B)=P(A \cap B)=P(B \mid A) \cdot P(A)$.

Bayes' Formula

- Have that $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
- So $P(A \mid B) \cdot P(B)=P(A \cap B)=P(B \mid A) \cdot P(A)$.
- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Bayes' Formula

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

Bayes' Formula

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- We can write $P(B)=P(B \cap A)+P\left(B \cap A^{c}\right)$

Bayes' Formula

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- We can write $P(B)=P(B \cap A)+P\left(B \cap A^{c}\right)$

$$
=P(B \mid A) \cdot P(A)+P\left(B \mid A^{c}\right) \cdot P\left(A^{c}\right)
$$

Bayes' Formula

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- We can write $P(B)=P(B \cap A)+P\left(B \cap A^{c}\right)$

$$
=P(B \mid A) \cdot P(A)+P\left(B \mid A^{c}\right) \cdot P\left(A^{c}\right)
$$

- Bayes' Formlua 2 :

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P\left(B \mid A^{c}\right) \cdot P\left(A^{c}\right)}
$$

Bayes' Formula

- Bayes' Formula 1:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B)}
$$

- We can write $P(B)=P(B \cap A)+P\left(B \cap A^{c}\right)$

$$
=P(B \mid A) \cdot P(A)+P\left(B \mid A^{c}\right) \cdot P\left(A^{c}\right)
$$

- Bayes' Formlua 2:

$$
P(A \mid B)=\frac{P(B \mid A) \cdot P(A)}{P(B \mid A) \cdot P(A)+P\left(B \mid A^{c}\right) \cdot P\left(A^{c}\right)}
$$

- NOTE: There was an error in the formula last time!!

Testing for a Disease - Revisited

- Consider a disease that affects $\frac{1}{1000}$ people.

Testing for a Disease - Revisited

- Consider a disease that affects $\frac{1}{1000}$ people.
- A test produces the results:
- 99% of infected people test positive.
"The test is 99% positive"
- 2% of uninfected people also test positive.

Testing for a Disease - Revisited

- Consider a disease that affects $\frac{1}{1000}$ people.
- A test produces the results:
- 99% of infected people test positive.
"The test is 99% positive"
- 2% of uninfected people also test positive.
- If you test positive, how likely is it that you have the disease?

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$
- We want to know:

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$
- We want to know:
- $P(D \mid T)$

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$
- We want to know:
- $P(D \mid T)$
- Using Bayes' Formula, we get $P(D \mid T)=.047$.

Testing for a Disease - Revisited

- Let D be the event that the person has the disease.
- Let T be the even that the person tests positive.
- We know:
- $P(D)=.001$
- $P(T \mid D)=.99$
- $P\left(T \mid D^{c}\right)=.02$
- We want to know:
- $P(D \mid T)$
- Using Bayes' Formula, we get $P(D \mid T)=.047$.
- So if you test positive for the disease, you have a 4.7% chance of having the disease.

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

	Tests Positive	Tests Negative
Has Disease		

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

	Tests Positive	Tests Negative
Has Disease	99	

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

	Tests Positive	Tests Negative
Has Disease	99	1
Healthy		

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

	Tests Positive	Tests Negative
Has Disease	99	1
Healthy	1998	

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

	Tests Positive	Tests Negative
Has Disease	99	1
Healthy	1998	97902

Testing for a Disease

Another way to see this. Consider a sample population of 100,000 .

	Tests Positive	Tests Negative
Has Disease	99	1
Healthy	1998	97902

So there are so many more people are a false positive than people who are a true positive.

Testing for a Disease

- How do we rule out false positives?

Testing for a Disease

- How do we rule out false positives?
- Test Again.

Testing for a Disease

- How do we rule out false positives?
- Test Again.
- See Handout \#4.

