The Monty Hall Problem

- You're on a game show, and you get to choose one of three closed doors.

The Monty Hall Problem

- You're on a game show, and you get to choose one of three closed doors.
- Behind one of the doors is $\$ 1,000,000$.
- Behind the other two doors are goats.

The Monty Hall Problem

- You're on a game show, and you get to choose one of three closed doors.
- Behind one of the doors is $\$ 1,000,000$.
- Behind the other two doors are goats.
- After making your choice, the host opens one of the other doors, and reveals a goat.

The Monty Hall Problem

- You're on a game show, and you get to choose one of three closed doors.
- Behind one of the doors is $\$ 1,000,000$.
- Behind the other two doors are goats.
- After making your choice, the host opens one of the other doors, and reveals a goat.
- You are then given the choice of changing your choice to the other remaining closed door.

The Monty Hall Problem

- You're on a game show, and you get to choose one of three closed doors.
- Behind one of the doors is $\$ 1,000,000$.
- Behind the other two doors are goats.
- After making your choice, the host opens one of the other doors, and reveals a goat.
- You are then given the choice of changing your choice to the other remaining closed door.
- Should you switch doors or stick with your first choice? (Does it matter?)

The Monty Hall Problem

- Your original choice has a $\frac{1}{3}$ probability of being correct.

The Monty Hall Problem

- Your original choice has a $\frac{1}{3}$ probability of being correct.
- The revealed goat does not change this probability

The Monty Hall Problem

- Your original choice has a $\frac{1}{3}$ probability of being correct.
- The revealed goat does not change this probability
- The other door must have probability $\frac{2}{3}$ of being the correct door.

The Monty Hall Problem

- Your original choice has a $\frac{1}{3}$ probability of being correct.
- The revealed goat does not change this probability
- The other door must have probability $\frac{2}{3}$ of being the correct door.
- Alternatively, switching essentially chooses two doors.

The Monty Hall Problem

- Label the doors A, B, and C.
- Suppose you choose door A.
- Suppose the host opens door C.

The Monty Hall Problem

- Label the doors A, B, and C.
- Suppose you choose door A.
- Suppose the host opens door C.
- Let A, B and C be the events that the cash is behind the corresponding door.
- Let I be the event that the host opens door C.

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=$

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=$

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=$

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=1$.

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=1$.
- $P(I \mid C)=$

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=1$.
- $P(I \mid C)=0$.

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=1$.
- $P(I \mid C)=0$.
- $P(I)=$

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=1$.
- $P(I \mid C)=0$.
- $P(I)=P(I \cap A)+P(I \cap B)+P(I \cap C)=\frac{1}{2}$.

The Monty Hall Problem

- We know:
- $P(A)=P(B)=P(C)=\frac{1}{3}$.
- $P(I \mid A)=\frac{1}{2}$.
- $P(I \mid B)=1$.
- $P(I \mid C)=0$.
- $P(I)=P(I \cap A)+P(I \cap B)+P(I \cap C)=\frac{1}{2}$.
- Then

$$
P(A \mid I)=\frac{P(I \mid A) \cdot P(A)}{P(I)}=\frac{1}{3}
$$

and

$$
P(B \mid I)=\frac{P(I \mid B) \cdot P(B)}{P(I)}=\frac{2}{3}
$$

O.J. Simpson Trial

- During the O.J. Simpson trial, the prosecution introduced evidence that Simpson had a history of domestic violence towards his ex-wife.

O.J. Simpson Trial

- During the O.J. Simpson trial, the prosecution introduced evidence that Simpson had a history of domestic violence towards his ex-wife.
- Defence: "an infinitesimal percentage - certainly fewer than 1 of 2,500 - of men who slap or beat their domestic partners go on to murder them."

O.J. Simpson Trial

- During the O.J. Simpson trial, the prosecution introduced evidence that Simpson had a history of domestic violence towards his ex-wife.
- Defence: "an infinitesimal percentage - certainly fewer than 1 of 2,500 - of men who slap or beat their domestic partners go on to murder them."
- Is the history of domestic violence relevant?

O.J. Simpson Trial

- Defence is answering the wrong question!

O.J. Simpson Trial

- Defence is answering the wrong question!
- Better question: What's the probability that a man murdered his ex-wife, given a history of domestic violence and the ex-wife was murdered by someone?

O.J. Simpson Trial

- Defence is answering the wrong question!
- Better question: What's the probability that a man murdered his ex-wife, given a history of domestic violence and the ex-wife was murdered by someone?
- Draw the Venn Diagram

O.J. Simpson Trial

- Let A be the event that a woman is abused by her spouse.
- Let M be the event that a woman is murdered.
- Let G be the event that the woman is murdered by her spouse.

O.J. Simpson Trial

- Let A be the event that a woman is abused by her spouse.
- Let M be the event that a woman is murdered.
- Let G be the event that the woman is murdered by her spouse.
- Defence presented $P(G \mid A)$.
- Interested in $P(G \mid A \cap M)$.

O.J. Simpson Trial

- $P(M) \approx \frac{1}{20,000}$ in 1994.

O.J. Simpson Trial

- $P(M) \approx \frac{1}{20,000}$ in 1994.
- $P\left(M \mid A \cap G^{c}\right) \approx P(M)$

O.J. Simpson Trial

- $P(M) \approx \frac{1}{20,000}$ in 1994.
- $P\left(M \mid A \cap G^{c}\right) \approx P(M)$
- In a group of 100,000 abused women, approximately 40 will be murdered by their spouse, and 5 will be murdered by someone else.

O.J. Simpson Trial

- $P(M) \approx \frac{1}{20,000}$ in 1994.
- $P\left(M \mid A \cap G^{c}\right) \approx P(M)$
- In a group of 100,000 abused women, approximately 40 will be murdered by their spouse, and 5 will be murdered by someone else.
- SO $P\left(M \mid A \cap G^{c}\right) \approx \frac{40}{45} \approx .9$

