Sally Clark Case

- Clark was a British mother whose first baby died of SIDS (sudden infant death syndrome) in 1996.

Sally Clark Case

- Clark was a British mother whose first baby died of SIDS (sudden infant death syndrome) in 1996.
- After her second baby died of SIDS in 1998, she was arrested for murder.

Sally Clark Case

- Professor Sir Roy Meadow: probability that a child will die from SIDS is $\frac{1}{8543}$

Sally Clark Case

- Professor Sir Roy Meadow: probability that a child will die from SIDS is $\frac{1}{8543}$
- So chances of having two children die from SIDS is $\frac{1}{73,000,000}$

Sally Clark Case

- Professor Sir Roy Meadow: probability that a child will die from SIDS is $\frac{1}{8543}$
- So chances of having two children die from SIDS is $\frac{1}{73,000,000}$
- How did he arrive at these figures?

Sally Clark Case

- Professor Sir Roy Meadow: probability that a child will die from SIDS is $\frac{1}{8543}$
- So chances of having two children die from SIDS is $\frac{1}{73,000,000}$
- How did he arrive at these figures?
- Since there are only 700, 000 births in Britain each year, it was argued that the probability that the deaths were accidental were non-existent.

Sally Clark Case

- Professor Sir Roy Meadow: probability that a child will die from SIDS is $\frac{1}{8543}$
- So chances of having two children die from SIDS is $\frac{1}{73,000,000}$
- How did he arrive at these figures?
- Since there are only 700, 000 births in Britain each year, it was argued that the probability that the deaths were accidental were non-existent.
- Clark was convicted of murder.

Sally Clark Case

- Professor Sir Roy Meadow: probability that a child will die from SIDS is $\frac{1}{8543}$
- So chances of having two children die from SIDS is $\frac{1}{73,000,000}$
- How did he arrive at these figures?
- Since there are only 700, 000 births in Britain each year, it was argued that the probability that the deaths were accidental were non-existent.
- Clark was convicted of murder.
- Is this reasoning valid?

Sally Clark Case

Problems:

- Prosecutor argued that since the defendant's story is highly improbably, the defendant's innocence is also highly improbable.

Sally Clark Case

Problems:

- Prosecutor argued that since the defendant's story is highly improbably, the defendant's innocence is also highly improbable.
- An example of "the prosecutor's fallacy".
- (the odds of winning the lottery are really low - but someone still usually wins)

Sally Clark Case

Problems:

- Prosecutor argued that since the defendant's story is highly improbably, the defendant's innocence is also highly improbable.
- An example of "the prosecutor's fallacy".
- (the odds of winning the lottery are really low - but someone still usually wins)
- One can't assume that the probability of siblings dying of SIDS are independent without evidence.

Sally Clark Case

Problems:

- Prosecutor argued that since the defendant's story is highly improbably, the defendant's innocence is also highly improbable.
- An example of "the prosecutor's fallacy".
- (the odds of winning the lottery are really low - but someone still usually wins)
- One can't assume that the probability of siblings dying of SIDS are independent without evidence.
- Need to consider the probability of two children dying from SIDS given that two children died.

Sally Clark Case

Problems:

- Prosecutor argued that since the defendant's story is highly improbably, the defendant's innocence is also highly improbable.
- An example of "the prosecutor's fallacy".
- (the odds of winning the lottery are really low - but someone still usually wins)
- One can't assume that the probability of siblings dying of SIDS are independent without evidence.
- Need to consider the probability of two children dying from SIDS given that two children died.
- How does this probability compare to the probability that both children were murdered?

Sally Clark Case

Other Problems:

- On average, the chances dying of SIDS is 1 in 1300.

Sally Clark Case

Other Problems:

- On average, the chances dying of SIDS is 1 in 1300.
- Meadows multiplied by probabilities that make SIDS more rare - such as a non-smoking household.
- Meadows ignored probabilities that make SIDS more likely
- such as both children being boys.

Sally Clark Case

Other Problems:

- On average, the chances dying of SIDS is 1 in 1300.
- Meadows multiplied by probabilities that make SIDS more rare - such as a non-smoking household.
- Meadows ignored probabilities that make SIDS more likely - such as both children being boys.
- Meadows then went on to compare this probability to all newborns.

Sally Clark Case

Other Problems:

- On average, the chances dying of SIDS is 1 in 1300.
- Meadows multiplied by probabilities that make SIDS more rare - such as a non-smoking household.
- Meadows ignored probabilities that make SIDS more likely - such as both children being boys.
- Meadows then went on to compare this probability to all newborns.
- The double SIDS ratio to the double homicide ratio was estimated as $9: 1$.

Sally Clark Case

Other Problems:

- On average, the chances dying of SIDS is 1 in 1300.
- Meadows multiplied by probabilities that make SIDS more rare - such as a non-smoking household.
- Meadows ignored probabilities that make SIDS more likely - such as both children being boys.
- Meadows then went on to compare this probability to all newborns.
- The double SIDS ratio to the double homicide ratio was estimated as $9: 1$.
- The conviction was overturned after the second appeal.

Expected Value - Revisited

- Recall that if an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the expected value is

$$
E V=\mu=A_{1} \cdot P\left(A_{1}\right)+\ldots+a_{n} \cdot P\left(A_{n}\right)
$$

Expected Value - Revisited

- Recall that if an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the expected value is

$$
E V=\mu=A_{1} \cdot P\left(A_{1}\right)+\ldots+a_{n} \cdot P\left(A_{n}\right)
$$

- Game 1: I pick a number between 1 and 2.
- If you correctly guess the number, I'll pay you $\$ 2$.

Expected Value - Revisited

- Recall that if an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the expected value is

$$
E V=\mu=A_{1} \cdot P\left(A_{1}\right)+\ldots+a_{n} \cdot P\left(A_{n}\right)
$$

- Game 1: I pick a number between 1 and 2.
- If you correctly guess the number, I'll pay you $\$ 2$.
- What is the expected value?

Expected Value - Revisited

- Recall that if an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the expected value is

$$
E V=\mu=A_{1} \cdot P\left(A_{1}\right)+\ldots+a_{n} \cdot P\left(A_{n}\right)
$$

- Game 1: I pick a number between 1 and 2.
- If you correctly guess the number, I'll pay you $\$ 2$.
- What is the expected value?
- Game 2: I pick a number between 1 and 1000.
- If you correctly guess the number, I'll pay you $\$ 1000$.

Expected Value - Revisited

- Recall that if an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the expected value is

$$
E V=\mu=A_{1} \cdot P\left(A_{1}\right)+\ldots+a_{n} \cdot P\left(A_{n}\right)
$$

- Game 1: I pick a number between 1 and 2.
- If you correctly guess the number, I'll pay you $\$ 2$.
- What is the expected value?
- Game 2: I pick a number between 1 and 1000.
- If you correctly guess the number, I'll pay you $\$ 1000$.
- What is the expected value?

Expected Value - Revisited

- Recall that if an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the expected value is

$$
E V=\mu=A_{1} \cdot P\left(A_{1}\right)+\ldots+a_{n} \cdot P\left(A_{n}\right)
$$

- Game 1: I pick a number between 1 and 2.
- If you correctly guess the number, I'll pay you $\$ 2$.
- What is the expected value?
- Game 2: I pick a number between 1 and 1000.
- If you correctly guess the number, I'll pay you $\$ 1000$.
- What is the expected value?
- Game 2 has more variation than game 1 .

Variance

- The variance is a statistic of how much spread there is in the expected value.

Variance

- The variance is a statistic of how much spread there is in the expected value.
- In some sense, it is measuring the volatility/risk of the experiment.
- If an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the variance is

$$
\sigma^{2}=\left(A_{1}-\mu\right)^{2} \cdot P\left(A_{1}\right)+\ldots+\left(A_{n}-\mu\right)^{2} \cdot P\left(A_{n}\right)
$$

Variance

- The variance is a statistic of how much spread there is in the expected value.
- In some sense, it is measuring the volatility/risk of the experiment.
- If an experiment has numerical outcomes $A_{1}, A_{2}, \ldots A_{n}$, the variance is

$$
\sigma^{2}=\left(A_{1}-\mu\right)^{2} \cdot P\left(A_{1}\right)+\ldots+\left(A_{n}-\mu\right)^{2} \cdot P\left(A_{n}\right)
$$

- The standard deviation is

$$
\sqrt{\sigma^{2}}=\sigma
$$

Variance

- What is the variance and standard deviation of game 1 ?

Variance

- What is the variance and standard deviation of game 1 ?
- What is the variance and standard deviation of game 2?

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.

$-$| \# of heads | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| probability | $\frac{1}{64}$ | $\frac{6}{64}$ | $\frac{15}{64}$ | $\frac{20}{64}$ | $\frac{15}{64}$ | $\frac{6}{64}$ | $\frac{1}{64}$ |

