Expected Value - Revisited

- An experiment is a Bernoulli Trial if:
- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.

Expected Value - Revisited

- An experiment is a Bernoulli Trial if:
- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.
- The probability of failure is

Expected Value - Revisited

- An experiment is a Bernoulli Trial if:
- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.
- The probability of failure is $1-p$.
- Suppose we repeat a Bernoulli trial n times.

Expected Value - Revisited

- An experiment is a Bernoulli Trial if:
- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.
- The probability of failure is $1-p$.
- Suppose we repeat a Bernoulli trial n times.
- How many successes do we expect to get? (what is the expected value, μ ?)

Expected Value - Revisited

- An experiment is a Bernoulli Trial if:
- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.
- The probability of failure is $1-p$.
- Suppose we repeat a Bernoulli trial n times.
- How many successes do we expect to get? (what is the expected value, μ ?)
- How much variance is there $\left(\sigma^{2}\right)$, in the expected number of successes?

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

\Rightarrow| $\#$ of heads | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| probability | $\frac{1}{64}$ | $\frac{6}{64}$ | $\frac{15}{64}$ | $\frac{20}{64}$ | $\frac{15}{64}$ | $\frac{6}{64}$ | $\frac{1}{64}$ |

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

\Rightarrow| \# of heads | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| probability | $\frac{1}{64}$ | $\frac{6}{64}$ | $\frac{15}{64}$ | $\frac{20}{64}$ | $\frac{15}{64}$ | $\frac{6}{64}$ | $\frac{1}{64}$ |

- The expected value is:

$$
\mu=0 \cdot \frac{1}{64}+1 \cdot \frac{6}{64}+\cdots+6 \cdot \frac{1}{64}=3 .
$$

Flipping a Coin

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

\Rightarrow| \# of heads | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| probability | $\frac{1}{64}$ | $\frac{6}{64}$ | $\frac{15}{64}$ | $\frac{20}{64}$ | $\frac{15}{64}$ | $\frac{6}{64}$ | $\frac{1}{64}$ |

- The expected value is:

$$
\mu=0 \cdot \frac{1}{64}+1 \cdot \frac{6}{64}+\cdots+6 \cdot \frac{1}{64}=3 .
$$

- The variance is:

$$
\sigma^{2}=(0-3)^{2} \cdot \frac{1}{64}+(1-3)^{2} \cdot \frac{1}{64}+\cdots+(6-1)^{2} \cdot \frac{1}{64}=\frac{3}{2} .
$$

Expected Value and Variance

- We want better formulas.

Expected Value and Variance

- We want better formulas.
- In n Bernoulli trials with success probability p, we have:

Expected Value and Variance

- We want better formulas.
- In n Bernoulli trials with success probability p, we have:
- $\mu=n p$.

Expected Value and Variance

- We want better formulas.
- In n Bernoulli trials with success probability p, we have:
- $\mu=n p$.
- $\sigma^{2}=n p(1-p)$.

The Drake Equation

- How many civilizations do we expect in the galaxy?

The Drake Equation

- How many civilizations do we expect in the galaxy?
- We can view this as a Bernoulli trial, by looking at each star.

The Drake Equation

- How many civilizations do we expect in the galaxy?
- We can view this as a Bernoulli trial, by looking at each star.
- n is 300 billion.

The Drake Equation

- How many civilizations do we expect in the galaxy?
- We can view this as a Bernoulli trial, by looking at each star.
- n is 300 billion.
- Want p.

The Drake Equation

- The Drake Equation is roughly:

$$
p=p_{\text {planet }} \cdot p_{\text {life }} \cdot p_{\text {intelligence }} \cdot p_{\text {civilization }}
$$

The Drake Equation

- The Drake Equation is roughly:

$$
p=p_{\text {planet }} \cdot p_{\text {life }} \cdot p_{\text {intelligence }} \cdot p_{\text {civilization }}
$$

- $p_{\text {planet }}$ is the probability that a star has an orbiting planet.

The Drake Equation

- The Drake Equation is roughly:

$$
p=p_{\text {planet }} \cdot p_{\text {life }} \cdot p_{\text {intelligence }} \cdot p_{\text {civilization }}
$$

- $p_{\text {planet }}$ is the probability that a star has an orbiting planet.
- $p_{\text {life }}$ is the probability that a planet is capable of sustaining life.

The Drake Equation

- The Drake Equation is roughly:

$$
p=p_{\text {planet }} \cdot p_{\text {life }} \cdot p_{\text {intelligence }} \cdot p_{\text {civilization }} .
$$

- $p_{\text {planet }}$ is the probability that a star has an orbiting planet.
- $p_{\text {life }}$ is the probability that a planet is capable of sustaining life.
- $p_{\text {intelligence }}$ is the probability that the planet sustains intelligent life.

The Drake Equation

- The Drake Equation is roughly:

$$
p=p_{\text {planet }} \cdot p_{\text {life }} \cdot p_{\text {intelligence }} \cdot p_{\text {civilization }} .
$$

- $p_{\text {planet }}$ is the probability that a star has an orbiting planet.
- $p_{\text {life }}$ is the probability that a planet is capable of sustaining life.
- $p_{\text {intelligence }}$ is the probability that the planet sustains intelligent life.
- $p_{\text {civilization }}$ is the probability that an intelligent species develops a civilization.

The Drake Equation

- We know $p_{\text {planet }} \approx 1$.

The Drake Equation

- We know $p_{\text {planet }} \approx 1$.
- Have to make educated guesses for the other probabilities.

The Drake Equation

- We know $p_{\text {planet }} \approx 1$.
- Have to make educated guesses for the other probabilities.
- Estimates are:
$-p_{\text {life }}=.13$
- $p_{\text {intelligence }}=1$
- $p_{\text {civilization }}=.2$

The Drake Equation

- We know $p_{\text {planet }} \approx 1$.
- Have to make educated guesses for the other probabilities.
- Estimates are:
$-p_{\text {life }}=.13$
- $p_{\text {intelligence }}=1$
- $p_{\text {civilization }}=.2$
- So $p=.026$.

The Drake Equation

- We know $p_{\text {planet }} \approx 1$.
- Have to make educated guesses for the other probabilities.
- Estimates are:
$-p_{\text {life }}=.13$
- $p_{\text {intelligence }}=1$
- $p_{\text {civilization }}=.2$
- So $p=.026$.
- So μ is approximately 7.8 billion.

Complaints?

- Criticisms:

Complaints?

- Criticisms:
- Civilizations don't last forever (need more complicated equation).

Complaints?

- Criticisms:
- Civilizations don't last forever (need more complicated equation).
- Multiplying probabilities

Complaints?

- Criticisms:
- Civilizations don't last forever (need more complicated equation).
- Multiplying probabilities
- We don't really know $p_{\text {life }}, p_{\text {intelligence, }}$ and $p_{\text {civilization }}$.

Flipping a Coin

- Going back to flipping a coin 6 times.

Flipping a Coin

- Going back to flipping a coin 6 times.
- Plot the probabilities of getting k heads,

Flipping a Coin

- Going back to flipping a coin 6 times.
- Plot the probabilities of getting k heads, and $\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Flipping a Coin

Flipping a Coin

- Now flip a coin 20 times.

Flipping a Coin

- Now flip a coin 20 times.
- What is μ ?

Flipping a Coin

- Now flip a coin 20 times.
- What is μ ?
- What is σ^{2} ?

Flipping a Coin

- Now flip a coin 20 times.
- What is μ ?
- What is σ^{2} ?
- Plot the probabilities of getting k heads, and $\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

Flipping a Coin

Flipping a Coin

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.

Flipping a Coin

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?

Flipping a Coin

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?
- The standard deviation/variance measures how wide the curve is.

Flipping a Coin

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?
- The standard deviation/variance measures how wide the curve is.
- The area under the curve is always 1 .

Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.

Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...

Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...
- We need to know 2 numbers to describe the normal distribution:

Normal Distributions

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...
- We need to know 2 numbers to describe the normal distribution:
- μ : the mean, where the curve is centered.
- σ : the standard deviation, which specifies how spread out the bell is.

