An experiment is a Bernoulli Trial if:

- there are two outcomes (success and failure),
- the probability of success, p, is always the same,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the trials are independent.

An experiment is a Bernoulli Trial if:

- there are two outcomes (success and failure),
- the probability of success, p, is always the same,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- the trials are independent.
- The probability of failure is

An experiment is a Bernoulli Trial if:

- there are two outcomes (success and failure),
- the probability of success, p, is always the same,

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- the trials are independent.
- The probability of failure is 1 p.
- Suppose we repeat a Bernoulli trial n times.

An experiment is a Bernoulli Trial if:

- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.
- The probability of failure is 1 p.
- Suppose we repeat a Bernoulli trial n times.
 - How many successes do we expect to get? (what is the expected value, µ?)

An experiment is a Bernoulli Trial if:

- there are two outcomes (success and failure),
- the probability of success, p, is always the same,
- the trials are independent.
- The probability of failure is 1 p.
- Suppose we repeat a Bernoulli trial n times.
 - How many successes do we expect to get? (what is the expected value, μ?)
 - How much variance is there (σ²), in the expected number of successes?

► Toss a coin 6 times, and count the number of heads.

Toss a coin 6 times, and count the number of heads.

(ロ)、(型)、(E)、(E)、 E) の(の)

We are repeating a Bernoulli trial 6 times.

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

•	# of heads	0	1	2	3	4	5	6
	probability	1	6	15	20	15	6	1
		64	64	64	64	64	64	64

(ロ)、(型)、(E)、(E)、 E) の(の)

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

$$\mu = 0 \cdot \frac{1}{64} + 1 \cdot \frac{6}{64} + \dots + 6 \cdot \frac{1}{64} = 3.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Toss a coin 6 times, and count the number of heads.
- We are repeating a Bernoulli trial 6 times.

$$\mu = 0 \cdot \frac{1}{64} + 1 \cdot \frac{6}{64} + \dots + 6 \cdot \frac{1}{64} = 3.$$

The variance is:

$$\sigma^2 = (0-3)^2 \cdot \frac{1}{64} + (1-3)^2 \cdot \frac{1}{64} + \dots + (6-1)^2 \cdot \frac{1}{64} = \frac{3}{2}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

We want better formulas.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- We want better formulas.
- ▶ In *n* Bernoulli trials with success probability *p*, we have:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- We want better formulas.
- ▶ In *n* Bernoulli trials with success probability *p*, we have:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$\mu = np$$
.

- We want better formulas.
- ▶ In *n* Bernoulli trials with success probability *p*, we have:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\mu = np.$$

• $\sigma^2 = np(1-p)$

How many civilizations do we expect in the galaxy?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- How many civilizations do we expect in the galaxy?
- We can view this as a Bernoulli trial, by looking at each star.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- How many civilizations do we expect in the galaxy?
- ▶ We can view this as a Bernoulli trial, by looking at each star.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ *n* is 300 billion.

- How many civilizations do we expect in the galaxy?
- ▶ We can view this as a Bernoulli trial, by looking at each star.

- ▶ *n* is 300 billion.
- ▶ Want p.

The Drake Equation is roughly:

 $p = p_{planet} \cdot p_{life} \cdot p_{intelligence} \cdot p_{civilization}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Drake Equation is roughly:

 $p = p_{planet} \cdot p_{life} \cdot p_{intelligence} \cdot p_{civilization}$

• p_{planet} is the probability that a star has an orbiting planet.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Drake Equation is roughly:

 $p = p_{planet} \cdot p_{life} \cdot p_{intelligence} \cdot p_{civilization}$

- p_{planet} is the probability that a star has an orbiting planet.
- *p_{life}* is the probability that a planet is capable of sustaining life.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Drake Equation is roughly:

 $p = p_{planet} \cdot p_{life} \cdot p_{intelligence} \cdot p_{civilization}$

- *p*_{planet} is the probability that a star has an orbiting planet.
- *p*_{life} is the probability that a planet is capable of sustaining life.
- *p*_{intelligence} is the probability that the planet sustains intelligent life.

The Drake Equation is roughly:

 $p = p_{planet} \cdot p_{life} \cdot p_{intelligence} \cdot p_{civilization}$

- *p*_{planet} is the probability that a star has an orbiting planet.
- *p*_{life} is the probability that a planet is capable of sustaining life.
- *p*_{intelligence} is the probability that the planet sustains intelligent life.
- *p_{civilization}* is the probability that an intelligent species develops a civilization.

• We know $p_{planet} \approx 1$.

- We know $p_{planet} \approx 1$.
- Have to make educated guesses for the other probabilities.

- We know $p_{planet} \approx 1$.
- Have to make educated guesses for the other probabilities.

- Estimates are:
 - ▶ *p*_{life} = .13
 - $p_{intelligence} = 1$
 - ▶ p_{civilization} = .2

- We know $p_{planet} \approx 1$.
- Have to make educated guesses for the other probabilities.

- Estimates are:
 - ▶ *p*_{life} = .13
 - $p_{intelligence} = 1$
 - *p_{civilization}* = .2

► So p = .026.

- We know $p_{planet} \approx 1$.
- Have to make educated guesses for the other probabilities.

- Estimates are:
 - ▶ *p*_{life} = .13
 - $p_{intelligence} = 1$
 - *p_{civilization}* = .2
- ▶ So p = .026.
- So μ is approximately 7.8 billion.

- Criticisms:
 - Civilizations don't last forever (need more complicated equation).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Criticisms:
 - Civilizations don't last forever (need more complicated equation).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Multiplying probabilities

- Criticisms:
 - Civilizations don't last forever (need more complicated equation).
 - Multiplying probabilities
 - ▶ We don't really know *p*_{life}, *p*_{intelligence}, and *p*_{civilization}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Going back to flipping a coin 6 times.

- Going back to flipping a coin 6 times.
- Plot the probabilities of getting k heads,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Going back to flipping a coin 6 times.
- ▶ Plot the probabilities of getting *k* heads, and $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲ロト ▲圖ト ▲ヨト ▲ヨト 三ヨー のへで

Now flip a coin 20 times.

Now flip a coin 20 times.

• What is μ ?

Now flip a coin 20 times.

- What is μ?
 What is σ²?

- Now flip a coin 20 times.
 - What is μ ?
 - What is σ^2 ?
- ▶ Plot the probabilities of getting *k* heads, and $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Where is the curve centered at?

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?
- The standard deviation/variance measures how wide the curve is.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Moral: when n gets large, the distribution of the number of successes looks like a bell-shaped curve.
- Where is the curve centered at?
- The standard deviation/variance measures how wide the curve is.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The area under the curve is always 1.

If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...

We need to know 2 numbers to describe the normal distribution:

- If a certain variable is distributed as a bell-shaped curve, we say that the variable follows a normal distribution.
- Examples: Bernoulli trials, heights of people, IQ scores, light bulb lifetimes...
- We need to know 2 numbers to describe the normal distribution:
 - μ : the mean, where the curve is centered.
 - σ: the standard deviation, which specifies how spread out the bell is.