Review

- A Bernoulli Trial is a very simple experiment:

Review

- A Bernoulli Trial is a very simple experiment:
- two possible outcomes (success or failure)
- probability of success is always the same (p)
- the trials are independent

Review

- A Bernoulli Trial is a very simple experiment:
- two possible outcomes (success or failure)
- probability of success is always the same (p)
- the trials are independent
- other experiments:

Review

- A Bernoulli Trial is a very simple experiment:
- two possible outcomes (success or failure)
- probability of success is always the same (p)
- the trials are independent
- other experiments:
- "what is the probability of k successes if we do a Bernoulli trial n times?"
- "how many successes do we expect if we do a Bernoulli trial n times?"

Multiple Choice Test

- A student is taking a multiple choice test

Multiple Choice Test

- A student is taking a multiple choice test
- 10 multiple choice questions, each with 4 answers
- Student is randomly answering each question

Multiple Choice Test

- A student is taking a multiple choice test
- 10 multiple choice questions, each with 4 answers
- Student is randomly answering each question
- What is p ?

Multiple Choice Test

- A student is taking a multiple choice test
- 10 multiple choice questions, each with 4 answers
- Student is randomly answering each question
- What is p ?
- What is the expected value?
(what do we expect the student's grade to be?)

Multiple Choice Test

- A student is taking a multiple choice test
- 10 multiple choice questions, each with 4 answers
- Student is randomly answering each question
- What is p ?
- What is the expected value?
(what do we expect the student's grade to be?)
-What is the standard deviation?

A Longer Test

- Suppose that the test is 30 questions long.

A Longer Test

- Suppose that the test is 30 questions long.
- What is p ?

A Longer Test

- Suppose that the test is 30 questions long.
- What is p ?
- What is the expected value? (what do we expect the student's grade to be?)

A Longer Test

- Suppose that the test is 30 questions long.
- What is p ?
- What is the expected value? (what do we expect the student's grade to be?)
- What is the standard deviation?

A Longer Test

- Suppose that the test is 30 questions long.
- What is p ?
- What is the expected value? (what do we expect the student's grade to be?)
- What is the standard deviation?
- The distribution of probabilities looks like a bell curve (defined using μ and σ)

A Longer Test

- Suppose that the test is 30 questions long.
- What is p ?
- What is the expected value? (what do we expect the student's grade to be?)
- What is the standard deviation?
- The distribution of probabilities looks like a bell curve (defined using μ and σ)

$$
\left(N(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}\right)
$$

A Longer Test

A Longer Test

- Observe that this student doesn't stand a good chance at passing.

A Longer Test

10^{-11}

- Observe that this student doesn't stand a good chance at passing.
- Want to quantify this.

Normal Distributions

- The bell curve is centered at μ.

Normal Distributions

- The bell curve is centered at μ.
- The standard deviation determines how wide the bell is.

Normal Distributions

- The bell curve is centered at μ.
- The standard deviation determines how wide the bell is.
- Fact: 68.26% of the area under the bell curve is between $\mu-\sigma$ and $\mu+\sigma$.

Normal Distributions

- The bell curve is centered at μ.
- The standard deviation determines how wide the bell is.
- Fact: 68.26% of the area under the bell curve is between $\mu-\sigma$ and $\mu+\sigma$.

- IQ is normally distributed with:
- $\mu=100$
- $\sigma=15$
- IQ is normally distributed with:
- $\mu=100$
- $\sigma=15$
- What fraction of the population has IQ between 85 and 115 ?
- IQ is normally distributed with:
- $\mu=100$
- $\sigma=15$
- What fraction of the population has IQ between 85 and 115 ?
- Between 100 and 115 ?
- IQ is normally distributed with:
- $\mu=100$
- $\sigma=15$
- What fraction of the population has IQ between 85 and 115 ?
- Between 100 and 115 ?
- Under 100?
- IQ is normally distributed with:
- $\mu=100$
- $\sigma=15$
- What fraction of the population has IQ between 85 and 115 ?
- Between 100 and 115 ?
- Under 100?
- Between 70 and 130?

Multiple Standard Deviations

- More generally, we can ask what $\%$ of the area is with 2 or 3 standard deviations of the mean.

Multiple Standard Deviations

- More generally, we can ask what $\%$ of the area is with 2 or 3 standard deviations of the mean.
- 95.44% of the area is between $\mu-2 \sigma$ and $\mu+2 \sigma$.

Multiple Standard Deviations

- More generally, we can ask what $\%$ of the area is with 2 or 3 standard deviations of the mean.
- 95.44% of the area is between $\mu-2 \sigma$ and $\mu+2 \sigma$.

Multiple Standard Deviations

- More generally, we can ask what $\%$ of the area is with 2 or 3 standard deviations of the mean.
- 99.74% of the area is between $\mu-3 \sigma$ and $\mu+3 \sigma$.

The 68-95-99.7 Rule

- The 68-95-99.7 rule states that:

The 68-95-99.7 Rule

- The 68-95-99.7 rule states that:
- 68.26% falls within 1 standard deviation
- 95.44% falls within 2 standard deviations
- 99.74% falls within 3 standard deviations

The 68-95-99.7 Rule

- The 68-95-99.7 rule states that:
- 68.26% falls within 1 standard deviation
- 95.44% falls within 2 standard deviations
- 99.74% falls within 3 standard deviations
- So what fraction of the population has IQ between 70 and 130 ?

The 68-95-99.7 Rule

- The 68-95-99.7 rule states that:
- 68.26% falls within 1 standard deviation
- 95.44% falls within 2 standard deviations
- 99.74% falls within 3 standard deviations
- So what fraction of the population has IQ between 70 and 130?
- Between 55 and 145?

The 68-95-99.7 Rule

- The 68-95-99.7 rule states that:
- 68.26% falls within 1 standard deviation
- 95.44% falls within 2 standard deviations
- 99.74% falls within 3 standard deviations
- So what fraction of the population has IQ between 70 and 130 ?
- Between 55 and 145?
- Over 145?

Multiple Choice Test - Revisited

- Recall the multiple choice test

Multiple Choice Test - Revisited

- Recall the multiple choice test
- 30 multiple choice questions, each with 4 answers
- Student is randomly answering each question
- $\mu=7.5$
- $\sigma \approx 2.5$

Multiple Choice Test - Revisited

- Recall the multiple choice test
- 30 multiple choice questions, each with 4 answers
- Student is randomly answering each question
- $\mu=7.5$
- $\sigma \approx 2.5$
- Approximately, what is the probability that the student will score under 15?

Airline Booking

- Why do airlines overbook their seats?

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials
- Say $n=200$
- and $p=.95$

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials
- Say $n=200$
- and $p=.95$
- Are the trials truly independent?

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials
- Say $n=200$
- and $p=.95$
- Are the trials truly independent?
- Expected number of passengers?

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials
- Say $n=200$
- and $p=.95$
- Are the trials truly independent?
- Expected number of passengers?
- Standard deviation?

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials
- Say $n=200$
- and $p=.95$
- Are the trials truly independent?
- Expected number of passengers?
- Standard deviation?
- If you sell 200 tickets, the airline will almost be under-full.

Airline Booking

- Why do airlines overbook their seats?
- Model this using Bernoulli trials
- Say $n=200$
- and $p=.95$
- Are the trials truly independent?
- Expected number of passengers?
- Standard deviation?
- If you sell 200 tickets, the airline will almost be under-full.
- Should incorporate these probabilities into the earlier decision theory model.
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- To answer, define the z-score of some value x :
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- To answer, define the z-score of some value x :
- $z=\frac{x-\mu}{\sigma}$
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- To answer, define the z-score of some value x :
- $z=\frac{x-\mu}{\sigma}$
- Back to IQs $(\mu=100, \sigma=15)$
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- To answer, define the z-score of some value x :
- $z=\frac{x-\mu}{\sigma}$
- Back to IQs $(\mu=100, \sigma=15)$
- What is the z-score of 85 ?
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- To answer, define the z-score of some value x :
- $z=\frac{x-\mu}{\sigma}$
- Back to IQs $(\mu=100, \sigma=15)$
- What is the z-score of 85 ?
- Of 120 ?
- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ ?
- To answer, define the z-score of some value x :
- $z=\frac{x-\mu}{\sigma}$
- Back to IQs $(\mu=100, \sigma=15)$
- What is the z-score of 85 ?
- Of 120 ?
- For any normal distribution, what is the z-score of μ ?
- So the z-score just says how many standard deviations a number is above or below μ
- So the z-score just says how many standard deviations a number is above or below μ
- A z-score table tells you what percent is below x.
- So the z-score just says how many standard deviations a number is above or below μ
- A z-score table tells you what percent is below x.
- What percent of the population has IQ less than or equal to 120 ?

Part of a z-score Table

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$
$\mathbf{0 . 9}$.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
$\mathbf{1 . 0}$.8412	.8438	.8461	.8485	.8508	.8531	.8554	.8577
$\mathbf{1 . 1}$.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790
$\mathbf{1 . 2}$.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980
$\mathbf{1 . 3}$.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147

Part of a z-score Table

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$	$\mathbf{0 . 0 7}$
$\mathbf{0 . 9}$.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
$\mathbf{1 . 0}$.8412	.8438	.8461	.8485	.8508	.8531	.8554	.8577
$\mathbf{1 . 1}$.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790
$\mathbf{1 . 2}$.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980
$\mathbf{1 . 3}$.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147

Part of a z-score Table

- So $\approx 90.82 \%$ of the population has $I Q$ less than 120 .

