

• A Bernoulli Trial is a very simple experiment:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Review

A Bernoulli Trial is a very simple experiment:

- two possible outcomes (success or failure)
- probability of success is always the same (p)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

the trials are independent

Review

A Bernoulli Trial is a very simple experiment:

- two possible outcomes (success or failure)
- probability of success is always the same (p)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- the trials are independent
- other experiments:

Review

- A Bernoulli Trial is a very simple experiment:
 - two possible outcomes (success or failure)
 - probability of success is always the same (p)
 - the trials are independent
- other experiments:
 - "what is the probability of k successes if we do a Bernoulli trial n times?"
 - "how many successes do we expect if we do a Bernoulli trial n times?"

A student is taking a multiple choice test

(ロ)、(型)、(E)、(E)、 E) の(の)

A student is taking a multiple choice test

▶ 10 multiple choice questions, each with 4 answers

Student is randomly answering each question

A student is taking a multiple choice test

▶ 10 multiple choice questions, each with 4 answers

- Student is randomly answering each question
- What is p?

- A student is taking a multiple choice test
 - ▶ 10 multiple choice questions, each with 4 answers

- Student is randomly answering each question
- What is p?
- What is the expected value? (what do we expect the student's grade to be?)

- A student is taking a multiple choice test
 - 10 multiple choice questions, each with 4 answers

- Student is randomly answering each question
- What is p?
- What is the expected value? (what do we expect the student's grade to be?)
- What is the standard deviation?

Suppose that the test is 30 questions long.

Suppose that the test is 30 questions long.

(ロ)、(型)、(E)、(E)、 E) の(の)

▶ What is p?

Suppose that the test is 30 questions long.

- ▶ What is p?
- What is the expected value? (what do we expect the student's grade to be?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Suppose that the test is 30 questions long.

- ▶ What is p?
- What is the expected value? (what do we expect the student's grade to be?)

What is the standard deviation?

Suppose that the test is 30 questions long.

- ► What is *p*?
- What is the expected value?
 - (what do we expect the student's grade to be?)
- What is the standard deviation?

 The distribution of probabilities looks like a bell curve (defined using μ and σ)

Suppose that the test is 30 questions long.

- ▶ What is p?
- What is the expected value?
 - (what do we expect the student's grade to be?)
- What is the standard deviation?

 The distribution of probabilities looks like a bell curve (defined using μ and σ)

$$\left(N(x)=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\right)$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 Observe that this student doesn't stand a good chance at passing.

 Observe that this student doesn't stand a good chance at passing.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Want to quantify this.

• The bell curve is centered at μ .

- The bell curve is centered at μ .
- The standard deviation determines how wide the bell is.

- The bell curve is centered at μ .
- > The standard deviation determines how wide the bell is.
 - Fact: 68.26% of the area under the bell curve is between $\mu \sigma$ and $\mu + \sigma$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The bell curve is centered at µ.
- > The standard deviation determines how wide the bell is.
 - Fact: 68.26% of the area under the bell curve is between μ − σ and μ + σ.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- ▶ $\mu = 100$
- ▶ σ = 15

What fraction of the population has IQ between 85 and 115?

- ► µ = 100
- ▶ σ = 15
- What fraction of the population has IQ between 85 and 115?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Between 100 and 115?

- ▶ µ = 100
- ▶ σ = 15
- What fraction of the population has IQ between 85 and 115?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Between 100 and 115?
- Under 100?

- ▶ µ = 100
- ▶ σ = 15
- What fraction of the population has IQ between 85 and 115?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- Between 100 and 115?
- Under 100?
- Between 70 and 130?

More generally, we can ask what % of the area is with 2 or 3 standard deviations of the mean.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

More generally, we can ask what % of the area is with 2 or 3 standard deviations of the mean.

・ロト・日本・モート モー うへぐ

▶ 95.44% of the area is between $\mu - 2\sigma$ and $\mu + 2\sigma$.

- More generally, we can ask what % of the area is with 2 or 3 standard deviations of the mean.
- ▶ 95.44% of the area is between $\mu 2\sigma$ and $\mu + 2\sigma$.

- More generally, we can ask what % of the area is with 2 or 3 standard deviations of the mean.
- ▶ 99.74% of the area is between $\mu 3\sigma$ and $\mu + 3\sigma$.

The 68-95-99.7 rule states that:

The 68-95-99.7 rule states that:

- 68.26% falls within 1 standard deviation
- 95.44% falls within 2 standard deviations
- ▶ 99.74% falls within 3 standard deviations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The 68-95-99.7 rule states that:
 - ▶ 68.26% falls within 1 standard deviation
 - ▶ 95.44% falls within 2 standard deviations
 - ▶ 99.74% falls within 3 standard deviations
- So what fraction of the population has IQ between 70 and 130?

- The 68-95-99.7 rule states that:
 - ▶ 68.26% falls within 1 standard deviation
 - ▶ 95.44% falls within 2 standard deviations
 - ▶ 99.74% falls within 3 standard deviations
- So what fraction of the population has IQ between 70 and 130?

Between 55 and 145?

- The 68-95-99.7 rule states that:
 - ▶ 68.26% falls within 1 standard deviation
 - ▶ 95.44% falls within 2 standard deviations
 - ▶ 99.74% falls within 3 standard deviations
- So what fraction of the population has IQ between 70 and 130?

- Between 55 and 145?
- Over 145?

Multiple Choice Test - Revisited

Recall the multiple choice test

Multiple Choice Test - Revisited

Recall the multiple choice test

30 multiple choice questions, each with 4 answers

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Student is randomly answering each question

• $\sigma \approx 2.5$

Multiple Choice Test - Revisited

Recall the multiple choice test

- 30 multiple choice questions, each with 4 answers
- Student is randomly answering each question
- ▶ µ = 7.5
- *σ* ≈ 2.5
- Approximately, what is the probability that the student will score under 15?

Why do airlines overbook their seats?

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- Why do airlines overbook their seats?
 - Model this using Bernoulli trials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Why do airlines overbook their seats?
 - Model this using Bernoulli trials

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ▶ Say *n* = 200
- ▶ and *p* = .95

Why do airlines overbook their seats?

- Model this using Bernoulli trials
 - ▶ Say *n* = 200
 - ▶ and *p* = .95
- Are the trials truly independent?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Why do airlines overbook their seats?

- Model this using Bernoulli trials
 - ▶ Say *n* = 200
 - ▶ and *p* = .95
- Are the trials truly independent?
- Expected number of passengers?

Why do airlines overbook their seats?

- Model this using Bernoulli trials
 - ▶ Say *n* = 200
 - ▶ and *p* = .95
- Are the trials truly independent?
- Expected number of passengers?

Standard deviation?

Why do airlines overbook their seats?

- Model this using Bernoulli trials
 - ▶ Say *n* = 200
 - and p = .95
- Are the trials truly independent?
- Expected number of passengers?
- Standard deviation?

If you sell 200 tickets, the airline will almost be under-full.

Why do airlines overbook their seats?

- Model this using Bernoulli trials
 - ▶ Say *n* = 200
 - and p = .95
- Are the trials truly independent?
- Expected number of passengers?
- Standard deviation?
- ► If you sell 200 tickets, the airline will almost be under-full.
- Should incorporate these probabilities into the earlier decision theory model.

A similar question: what fraction of the area is within .5 or 1.5 standard deviations from µ?

A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A similar question: what fraction of the area is within .5 or 1.5 standard deviations from μ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$z = \frac{x - \mu}{\sigma}$$

A similar question: what fraction of the area is within .5 or 1.5 standard deviations from µ?

•
$$z = \frac{x - \mu}{\sigma}$$

• Back to IQs ($\mu = 100, \sigma = 15$)

A similar question: what fraction of the area is within .5 or 1.5 standard deviations from µ?

► To answer, define the *z*-score of some value *x*:

$$\blacktriangleright z = \frac{x - \mu}{\sigma}$$

• Back to IQs (
$$\mu = 100, \sigma = 15$$
)

What is the z-score of 85?

A similar question: what fraction of the area is within .5 or 1.5 standard deviations from µ?

$$\blacktriangleright \ z = \frac{x - \mu}{\sigma}$$

• Back to IQs (
$$\mu = 100, \sigma = 15$$
)

- What is the z-score of 85?
- ▶ Of 120?

- A similar question: what fraction of the area is within .5 or 1.5 standard deviations from µ?
- ► To answer, define the *z*-score of some value *x*:

$$rac{x-\mu}{\sigma}$$

• Back to IQs (
$$\mu = 100, \sigma = 15$$
)

- What is the z-score of 85?
- ▶ Of 120?
- For any normal distribution, what is the *z*-score of μ ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So the z-score just says how many standard deviations a number is above or below μ

So the z-score just says how many standard deviations a number is above or below μ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

► A *z*-score table tells you what percent is below *x*.

- So the z-score just says how many standard deviations a number is above or below μ
- ► A *z*-score table tells you what percent is below *x*.
- What percent of the population has IQ less than or equal to 120?

Part of a *z*-score Table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
1.0	.8412	.8438	.8461	.8485	.8508	.8531	.8554	.8577
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147

Part of a *z*-score Table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
1.0	.8412	.8438	.8461	.8485	.8508	.8531	.8554	.8577
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147

Part of a *z*-score Table

▶ So \approx 90.82% of the population has *IQ* less than 120.