

► You're setting regulations for an elevator for 8 people

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- You're setting regulations for an elevator for 8 people
- Total weight of 8 randomly chosen people is normally distributed.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- mean is 1200 lb
- standard deviation is 200 lb

- You're setting regulations for an elevator for 8 people
- Total weight of 8 randomly chosen people is normally distributed.

- mean is 1200 lb
- standard deviation is 200 lb
- How often will weight be above 1600 lb?

- You're setting regulations for an elevator for 8 people
- Total weight of 8 randomly chosen people is normally distributed.

- mean is 1200 *lb*
- standard deviation is 200 lb
- How often will weight be above 1600 lb?
 - ▶ (68-95-99.7 rule)

- You're setting regulations for an elevator for 8 people
- Total weight of 8 randomly chosen people is normally distributed.

- mean is 1200 lb
- standard deviation is 200 lb
- How often will weight be above 1600 lb?
 - (68-95-99.7 rule)
- ▶ How often will weight be above 1750 *lb*?
 - Need to compute the z-score

The z-score computes how many standard deviations a point is above the mean.

z-scores

The z-score computes how many standard deviations a point is above the mean.

►
$$z(x) = \frac{x-\mu}{\sigma}$$

z-scores

The z-score computes how many standard deviations a point is above the mean.

•
$$z(x) = \frac{x-\mu}{\sigma}$$

The corresponding number on the z-score table five what the percent of the area to the left of x.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979

z-scores

The z-score computes how many standard deviations a point is above the mean.

•
$$z(x) = \frac{x-\mu}{\sigma}$$

The corresponding number on the z-score table five what the percent of the area to the left of x.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979

You're a car manufacturer

- You're a car manufacturer
- Lifetime of engine is normally distributed

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ mean is 10 years
- standard deviation is 2 years

- You're a car manufacturer
- Lifetime of engine is normally distributed
 - mean is 10 years
 - standard deviation is 2 years
- Willing to replace 4% of failed engines

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- You're a car manufacturer
- Lifetime of engine is normally distributed
 - mean is 10 years
 - standard deviation is 2 years
- Willing to replace 4% of failed engines
- How long of a warranty can you give?

- You're a car manufacturer
- Lifetime of engine is normally distributed
 - mean is 10 years
 - standard deviation is 2 years
- Willing to replace 4% of failed engines
- How long of a warranty can you give?
 - Find the z-score representing .04 area, and then find x

- You're a car manufacturer
- Lifetime of engine is normally distributed
 - mean is 10 years
 - standard deviation is 2 years
- Willing to replace 4% of failed engines
- How long of a warranty can you give?
 - Find the z-score representing .04 area, and then find x

z	0.09	0.08	0.07	0.06	0.05	0.04	0.03
-1.8	.0294	.0301	.0307	.0314	.0322	.0329	.0336
-1.7	.0367	.0375	.0384	.0392	.0401	.0409	.0418
-1.6	.0455	.0465	.0475	.0485	.0495	.0505	.0516
-1.5	.0559	.0571	.0582	.0594	.0606	.0618	.0630

- You're a car manufacturer
- Lifetime of engine is normally distributed
 - mean is 10 years
 - standard deviation is 2 years
- Willing to replace 4% of failed engines
- How long of a warranty can you give?
 - Find the z-score representing .04 area, and then find x

z	0.09	0.08	0.07	0.06	0.05	0.04	0.03
	.0294						
-1.7	.0367	.0375	.0384	.0392	.0401	.0409	.0418
-1.6	.0455	.0465	.0475	.0485	.0495	.0505	.0516
-1.5	.0559	.0571	.0582	.0594	.0606	.0618	.0630

In 1984, U.Va. announced that the mean salary of a graduate from the Department of Rhetoric was \$55,000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In 1984, U.Va. announced that the mean salary of a graduate from the Department of Rhetoric was \$55,000

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▶ With inflation, that's \$124,000

- In 1984, U.Va. announced that the mean salary of a graduate from the Department of Rhetoric was \$55,000
 - ▶ With inflation, that's \$124,000
 - ▶ That included NBA star Ralph Sampson's \$1,165,500 salary

- In 1984, U.Va. announced that the mean salary of a graduate from the Department of Rhetoric was \$55,000
 - With inflation, that's \$124,000
 - ▶ That included NBA star Ralph Sampson's \$1, 165, 500 salary

Mean is sensitive to outliers

- In 1984, U.Va. announced that the mean salary of a graduate from the Department of Rhetoric was \$55,000
 - With inflation, that's \$124,000
 - ▶ That included NBA star Ralph Sampson's \$1,165,500 salary
- Mean is sensitive to outliers
 - A data point is an **outlier** if its value is extreme, and not typical of most of the data

- In 1984, U.Va. announced that the mean salary of a graduate from the Department of Rhetoric was \$55,000
 - With inflation, that's \$124,000
 - ▶ That included NBA star Ralph Sampson's \$1, 165, 500 salary
- Mean is sensitive to outliers
 - A data point is an **outlier** if its value is extreme, and not typical of most of the data

Want a type of average that is not sensitive to outliers

Suppose we ask 5 people how many hours of TV they watch.

Suppose we ask 5 people how many hours of TV they watch.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Responses: 5,7,3,38,7

Suppose we ask 5 people how many hours of TV they watch.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ Responses: 5,7,3,38,7
- What is the mean?

- Suppose we ask 5 people how many hours of TV they watch.
 - Responses: 5,7,3,38,7
- What is the mean?
- The median is another kind of average:
 - List the data in order, and take the middle number

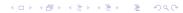
- Suppose we ask 5 people how many hours of TV they watch.
 - Responses: 5,7,3,38,7
- What is the mean?
- The median is another kind of average:
 - List the data in order, and take the middle number

If there are two middle numbers, take their mean

- Suppose we ask 5 people how many hours of TV they watch.
 - Responses: 5,7,3,38,7
- What is the mean?
- The median is another kind of average:
 - List the data in order, and take the middle number

- If there are two middle numbers, take their mean
- What is the median number of hours watched?

• Another type of average is the interquartile range:



- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22
 - Sort the data into numerical order, and divide them into four equal (consecutive) groups, called quartiles

- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22
 - Sort the data into numerical order, and divide them into four equal (consecutive) groups, called quartiles
 - These groups are called the first through fourth quartiles

- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22
 - Sort the data into numerical order, and divide them into four equal (consecutive) groups, called quartiles
 - These groups are called the first through fourth quartiles

Which quartiles will contain outliers?

- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22
 - Sort the data into numerical order, and divide them into four equal (consecutive) groups, called quartiles
 - These groups are called the first through fourth quartiles

- Which quartiles will contain outliers?
- Define Q_1 to be the median of the first and second quartile

- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22
 - Sort the data into numerical order, and divide them into four equal (consecutive) groups, called quartiles
 - These groups are called the first through fourth quartiles
 - Which quartiles will contain outliers?
 - Define Q_1 to be the median of the first and second quartile
 - Define Q_3 to be the median of the third and fourth quartiles

Quartiles

- Another type of average is the interquartile range:
- ► Take: 1, 3, 11, 20, 50, 16, 9, 2, 1, 9, 16, 24, 1, 5, 15, 22
 - Sort the data into numerical order, and divide them into four equal (consecutive) groups, called quartiles
 - These groups are called the first through fourth quartiles
 - Which quartiles will contain outliers?
 - Define Q_1 to be the median of the first and second quartile
 - Define Q_3 to be the median of the third and fourth quartiles

• Define the interquartile range, IQR, to be $IQR = Q_3 - Q_1$

Outliers

Rule of thumb: an outlier is a data point that is:

• less than $Q_1 - 1.5 \cdot IQR$, or

Outliers

Rule of thumb: an outlier is a data point that is:

- less than $Q_1 1.5 \cdot IQR$, or
- more than $Q_2 + 1.5 \cdot IQR$

Outliers

- Rule of thumb: an outlier is a data point that is:
 - less than $Q_1 1.5 \cdot IQR$, or
 - more than $Q_2 + 1.5 \cdot IQR$
- What are the outliers in the previous data set?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In baseball, the batting average is

batting average = $\frac{\text{number of hits}}{\text{number of at-bats}}$

In baseball, the batting average is

batting average = $\frac{\text{number of hits}}{\text{number of at-bats}}$

Consider the following data for two players:

	Hits	Attempts	Hits	Attempts
	(2012)	(2012)	(2013)	(2013)
Player A	55	100	298	1000
Player B	372	1000	25	100

In baseball, the batting average is

batting average = $\frac{\text{number of hits}}{\text{number of at-bats}}$

Consider the following data for two players:

	Hits	Attempts	Hits	Attempts
	(2012)	(2012)	(2013)	(2013)
Player A	55	100	298	1000
Player B	372	1000	25	100

What are the batting averages for the two players in each year?

In baseball, the batting average is

batting average = $\frac{\text{number of hits}}{\text{number of at-bats}}$

Consider the following data for two players:

	Hits	Attempts	Hits	Attempts
	(2012)	(2012)	(2013)	(2013)
Player A	55	100	298	1000
Player B	372	1000	25	100

- What are the batting averages for the two players in each year?
- Player A appears to be a better hitter

Now compute the overall batting average for each player

Now compute the overall batting average for each player

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Overall, it seems that Player B is the better hitter!

Now compute the overall batting average for each player

- Overall, it seems that Player B is the better hitter!
- This is an example of Simpson's Paradox:

- Now compute the overall batting average for each player
- Overall, it seems that Player *B* is the better hitter!
- This is an example of Simpson's Paradox:
 - A trend that appears in different groups of data may disappear when these groups are combined. Using aggregate data, the trend may reverse itself.

1973 admissions data for UC Berkeley graduate school:

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ 1973 admissions data for UC Berkeley graduate school:

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

• Case was made that admissions was biased against women.

▶ 1973 admissions data for UC Berkeley graduate school:

	Applicants	Admitted
Men	8442	44%
Women	4321	35%

- Case was made that admissions was biased against women.
- Alternative explanations?

	Breakdown	among	six	largest	departments:	
--	-----------	-------	-----	---------	--------------	--

Dept.	Men	Men	Women	Women
	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

Dept.	Men	Men	Women	Women
	Applicants	Admitted	Applicants	Admitted
А	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

(ロ)、(型)、(E)、(E)、 E) の(の)

Breakdown among six largest departments:

Most departments individually favored women

Dept.	Men	Men	Women	Women
	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Breakdown among six largest departments:

- Most departments individually favored women
- Explanations?

Dept.	Men	Men	Women	Women
	Applicants	Admitted	Applicants	Admitted
A	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
Е	191	28%	393	24%
F	373	6%	341	7%

Breakdown among six largest departments:

- Most departments individually favored women
- Explanations?
- It was concluded that women were more likely to apply to more competitive departments with low rates of admission.

A medical study compared kidney stone treatments:

► A medical study compared kidney stone treatments:

- Treatment A: all open surgical procedures
- Treatment B: percutaneous nephrolithotomy

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► A medical study compared kidney stone treatments:

- Treatment A: all open surgical procedures
- Treatment B: percutaneous nephrolithotomy
- Treatment A was successful 78% of the time (273/350)

A medical study compared kidney stone treatments:

- Treatment A: all open surgical procedures
- Treatment B: percutaneous nephrolithotomy
- Treatment A was successful 78% of the time (273/350)
- Treatment B was successful 83% of the time (289/350)

A medical study compared kidney stone treatments:

- Treatment A: all open surgical procedures
- Treatment B: percutaneous nephrolithotomy
- Treatment A was successful 78% of the time (273/350)
- ► Treatment B was successful **83**% of the time (289/350)

Break treatment among stone size:

A medical study compared kidney stone treatments:

- Treatment A: all open surgical procedures
- Treatment B: percutaneous nephrolithotomy
- Treatment A was successful 78% of the time (273/350)
- ► Treatment B was successful **83**% of the time (289/350)
- Break treatment among stone size:

	Treatment A	Treatment B
Small Stones	93% (81/87)	87% (234/270)
Large Stones	73% (192/263)	69% (55/80)

A medical study compared kidney stone treatments:

- Treatment A: all open surgical procedures
- Treatment B: percutaneous nephrolithotomy
- Treatment A was successful 78% of the time (273/350)
- Treatment B was successful 83% of the time (289/350)
- Break treatment among stone size:

	Treatment A	Treatment B
Small Stones	93% (81/87)	87% (234/270)
Large Stones	73% (192/263)	69% (55/80)

 Doctors were performing the better treatment to the more serious stones.