Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance

Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance
- How did they obtain this number?

Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance
- How did they obtain this number?
- How do they know that its accurate?

Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance
- How did they obtain this number?
- How do they know that its accurate?
- There is some true proportion, p, that approves of Congress' performance

Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance
- How did they obtain this number?
- How do they know that its accurate?
- There is some true proportion, p, that approves of Congress' performance
- We don't know p (we want to find it)

Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance
- How did they obtain this number?
- How do they know that its accurate?
- There is some true proportion, p, that approves of Congress' performance
- We don't know p (we want to find it)
- Asking a random person if they approve of Congress is a Bernoulli trial

Congressional Approval Ratings

- Rasmussen Polls: 9\% approve of Congress' performance
- How did they obtain this number?
- How do they know that its accurate?
- There is some true proportion, p, that approves of Congress' performance
- We don't know p (we want to find it)
- Asking a random person if they approve of Congress is a Bernoulli trial
- "Do you approve of Congress?" is a yes/no question

Polling

- Ask n randomly selected people "do you approve of Congress"?

Polling

- Ask n randomly selected people "do you approve of Congress"?
- Say x of them answer "yes"

Polling

- Ask n randomly selected people "do you approve of Congress"?
- Say x of them answer "yes"
- Define $\hat{p}=\frac{x}{n}$

Polling

- Ask n randomly selected people "do you approve of Congress"?
- Say x of them answer "yes"
- Define $\hat{p}=\frac{x}{n}$
- \hat{p} is our estimate for p

Polling

- Ask n randomly selected people "do you approve of Congress"?
- Say x of them answer "yes"
- Define $\hat{p}=\frac{x}{n}$
- \hat{p} is our estimate for p
- Note that we are asking a different question than in previous lectures (fraction successes vs. number of successes)

Polling

- Ask n randomly selected people "do you approve of Congress"?
- Say x of them answer "yes"
- Define $\hat{p}=\frac{x}{n}$
- \hat{p} is our estimate for p
- Note that we are asking a different question than in previous lectures (fraction successes vs. number of successes)
- \hat{p} will follow a normal distribution with:

Polling

- Ask n randomly selected people "do you approve of Congress"?
- Say x of them answer "yes"
- Define $\hat{p}=\frac{x}{n}$
- \hat{p} is our estimate for p
- Note that we are asking a different question than in previous lectures
(fraction successes vs. number of successes)
- \hat{p} will follow a normal distribution with:
- $\mu=p$
- $\sigma=\sqrt{\frac{p(1-p)}{n}}$

Polling

- Suppose the true proportion of voters that approve of Congress is 10%

Polling

- Suppose the true proportion of voters that approve of Congress is 10%
- Design a survey that randomly polls 100 people

Polling

- Suppose the true proportion of voters that approve of Congress is 10%
- Design a survey that randomly polls 100 people
- What is σ ?

Polling

- Suppose the true proportion of voters that approve of Congress is 10%
- Design a survey that randomly polls 100 people
- What is σ ?
- How often will \hat{p} lie between .07 and .13 ?

Polling Accuracy

- What will happen as n increases?

Polling Accuracy

- What will happen as n increases?
- σ for various $n(p=.1)$:

n	100	200	400	800	1600	3200
σ	.0300	.0212	.0150	.0106	.0075	.0053

Polling Accuracy

- What will happen as n increases?
- σ for various $n(p=.1)$:

n	100	200	400	800	1600	3200
σ	.0300	.0212	.0150	.0106	.0075	.0053

- To cut σ in half, what must you do to n ?

Polling Accuracy

- What will happen as n increases?
- σ for various $n(p=.1)$:

n	100	200	400	800	1600	3200
σ	.0300	.0212	.0150	.0106	.0075	.0053

- To cut σ in half, what must you do to n ?
- If you randomly poll 3200 people, how often will will \hat{p} lie between . 09 and .11?

Polling Accuracy

- What will happen as n increases?
- σ for various $n(p=.1)$:

n	100	200	400	800	1600	3200
σ	.0300	.0212	.0150	.0106	.0075	.0053

- To cut σ in half, what must you do to n ?
- If you randomly poll 3200 people, how often will will \hat{p} lie between . 09 and .11 ?
- If the U.S. population suddenly doubled, how accurate would randomly polling 3200 people be?

Polling Accuracy

- What will happen as n increases?
- σ for various $n(p=.1)$:

n	100	200	400	800	1600	3200
σ	.0300	.0212	.0150	.0106	.0075	.0053

- To cut σ in half, what must you do to n ?
- If you randomly poll 3200 people, how often will will \hat{p} lie between . 09 and .11 ?
- If the U.S. population suddenly doubled, how accurate would randomly polling 3200 people be?
- In polling, standard deviation is also known as sampling error

Polling Accuracy

- If we poll 3200 people, what is the probability that $\hat{p}>.12$?

Polling Accuracy

- If we poll 3200 people, what is the probability that $\hat{p}>.12$?
- Need to know to know the area to the right of 4 standard deviations

Polling Accuracy

- If we poll 3200 people, what is the probability that $\hat{p}>.12$?
- Need to know to know the area to the right of 4 standard deviations
- $\approx .00003$

Polling Accuracy

- If we poll 3200 people, what is the probability that $\hat{p}>.12$?
- Need to know to know the area to the right of 4 standard deviations
- $\approx .00003$
- This could happen due to random circumstances

Polling Accuracy

- If we poll 3200 people, what is the probability that $\hat{p}>.12$?
- Need to know to know the area to the right of 4 standard deviations
- $\approx .00003$
- This could happen due to random circumstances
- More likely the case that the survey wasn't random

Conducting a Survey

- How should one go about conducting a survey?

Conducting a Survey

- How should one go about conducting a survey?
- A simple random survey is:

Conducting a Survey

- How should one go about conducting a survey?
- A simple random survey is:
- unbiased (each individual has the same chance of being polled)

Conducting a Survey

- How should one go about conducting a survey?
- A simple random survey is:
- unbiased (each individual has the same chance of being polled)
- independent (selection of individual X has no bearing on the selection of individual Y)

Conducting a Survey

- How should one go about conducting a survey?
- A simple random survey is:
- unbiased (each individual has the same chance of being polled)
- independent (selection of individual X has no bearing on the selection of individual Y)
- We are trying to make sure that asking the question is a Bernoulli trial

Opportunity Bias

- Suppose we ask the first n people who come along.

Opportunity Bias

- Suppose we ask the first n people who come along.
- Problems?

Opportunity Bias

- Suppose we ask the first n people who come along.
- Problems?
- not everyone is equally likely

Opportunity Bias

- Suppose we ask the first n people who come along.
- Problems?
- not everyone is equally likely
- not independent: people in groups

Sampling Bias

- Suppose we mail out surveys (or randomly phone people)

Sampling Bias

- Suppose we mail out surveys (or randomly phone people)
- Problems?

Sampling Bias

- Suppose we mail out surveys (or randomly phone people)
- Problems?
- some people will choose not to respond

Sampling Bias

- Suppose we mail out surveys (or randomly phone people)
- Problems?
- some people will choose not to respond
- not everyone is equally likely

Sampling Bias

- Suppose we mail out surveys (or randomly phone people)
- Problems?
- some people will choose not to respond
- not everyone is equally likely
- Sampling bias is a bias where some people are less likely to be polled than others

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:
- The American Literary Digest collected 2,000, 000 postal surveys

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:
- The American Literary Digest collected 2,000, 000 postal surveys
- Concluded that Landon would win by a landslide

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:
- The American Literary Digest collected 2,000, 000 postal surveys
- Concluded that Landon would win by a landslide
- Collected addresses from readers of the magazine and registered automobile owners

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:
- The American Literary Digest collected 2,000, 000 postal surveys
- Concluded that Landon would win by a landslide
- Collected addresses from readers of the magazine and registered automobile owners
- Bias towards car owners (rich)

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:
- The American Literary Digest collected 2,000,000 postal surveys
- Concluded that Landon would win by a landslide
- Collected addresses from readers of the magazine and registered automobile owners
- Bias towards car owners (rich)
- Gallup Poll selected 50,000 people using U.S. Census data, and physically tracked them down

Roosevelt/Landon Election

- Two polls during the 1936 presidential election:
- The American Literary Digest collected 2,000, 000 postal surveys
- Concluded that Landon would win by a landslide
- Collected addresses from readers of the magazine and registered automobile owners
- Bias towards car owners (rich)
- Gallup Poll selected 50, 000 people using U.S. Census data, and physically tracked them down
- Concluded that Roosevelt would win by a landslide

Dewey/Truman Election

- For the 1948 election, the Chicago Tribune wanted to go to press early

Dewey/Truman Election

- For the 1948 election, the Chicago Tribune wanted to go to press early
- Trusted a phone survey claiming that Dewey would win by a landslide

Dewey/Truman Election

- For the 1948 election, the Chicago Tribune wanted to go to press early
- Trusted a phone survey claiming that Dewey would win by a landslide
- Problems?

Dewey/Truman Election

- For the 1948 election, the Chicago Tribune wanted to go to press early
- Trusted a phone survey claiming that Dewey would win by a landslide
- Problems?
- Telephones were not widespread

Dewey/Truman Election

- For the 1948 election, the Chicago Tribune wanted to go to press early
- Trusted a phone survey claiming that Dewey would win by a landslide
- Problems?
- Telephones were not widespread
- Bias towards the rich and urban-dwellers

Rasmussen Polls

- During 2012 election, Gallup and Rasmussen ran polls

Rasmussen Polls

- During 2012 election, Gallup and Rasmussen ran polls
- Only called landlines

Rasmussen Polls

- During 2012 election, Gallup and Rasmussen ran polls
- Only called landlines
- Rasmussen did not reattempt a missed call

Rasmussen Polls

- During 2012 election, Gallup and Rasmussen ran polls
- Only called landlines
- Rasmussen did not reattempt a missed call
- Gallup reattempted missed calls

Rasmussen Polls

- During 2012 election, Gallup and Rasmussen ran polls
- Only called landlines
- Rasmussen did not reattempt a missed call
- Gallup reattempted missed calls
- Problems?

Rasmussen Polls

- During 2012 election, Gallup and Rasmussen ran polls
- Only called landlines
- Rasmussen did not reattempt a missed call
- Gallup reattempted missed calls
- Problems?
- Both companies had skewed results

Dealing with Bias

- After an election, we know the bias for every poll

Dealing with Bias

- After an election, we know the bias for every poll
- FiveThirtyEight's model:

Dealing with Bias

- After an election, we know the bias for every poll
- FiveThirtyEight's model:
- Use previous elections to determine a "bias factor"

Dealing with Bias

- After an election, we know the bias for every poll
- FiveThirtyEight's model:
- Use previous elections to determine a "bias factor"
- Take weighted average of all polls
- (count more recent polls more strongly)

Dealing with Bias

- After an election, we know the bias for every poll
- FiveThirtyEight's model:
- Use previous elections to determine a "bias factor"
- Take weighted average of all polls
- (count more recent polls more strongly)
- Can use extra data to weight answers:

Dealing with Bias

- After an election, we know the bias for every poll
- FiveThirtyEight's model:
- Use previous elections to determine a "bias factor"
- Take weighted average of all polls
- (count more recent polls more strongly)
- Can use extra data to weight answers:
- Suppose one polls 80% men and 20% women

Dealing with Bias

- After an election, we know the bias for every poll
- FiveThirtyEight's model:
- Use previous elections to determine a "bias factor"
- Take weighted average of all polls
- (count more recent polls more strongly)
- Can use extra data to weight answers:
- Suppose one polls 80% men and 20% women
- Can weight men's answers by .25 to get a better representation

