Review

- We examined polls with yes/no questions

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"
- \hat{p} is normally distributed with:

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"
- \hat{p} is normally distributed with:
- mean $\mu=$

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"
- \hat{p} is normally distributed with:
- mean $\mu=p$

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"
- \hat{p} is normally distributed with:
- mean $\mu=p$
- standard deviation $\sigma=$

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"
- \hat{p} is normally distributed with:
- mean $\mu=p$
- standard deviation $\sigma=\sqrt{\frac{p(1-p)}{n}}$

Review

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p}=\frac{x}{n}$
- n is the number of people we poll
- x is the number of people who say "yes"
- \hat{p} is normally distributed with:
- mean $\mu=p$
- standard deviation $\sigma=\sqrt{\frac{p(1-p)}{n}}$
- standard deviation is also called sampling error

Sampling Error

- To cut σ in half, what must you do to n ?

Sampling Error

- To cut σ in half, what must you do to n ?
- Suppose $p=.62$

Get σ in terms of n :

n	100	200	400	800	1600	3200
σ	.0485	.0343	.0243	.0172	.0121	.0086

Sampling Error

- To cut σ in half, what must you do to n ?
- Suppose $p=.62$

Get σ in terms of n :

n	100	200	400	800	1600	3200
σ	.0485	.0343	.0243	.0172	.0121	.0086

- If you quadruple n, σ shrinks by 2

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}
- How often is \hat{p} between .7 and .74 ?

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}
- How often is \hat{p} between .7 and .74 ?
- 68% of the time

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}
- How often is \hat{p} between .7 and .74 ?
- 68% of the time
- How often is \hat{p} between . 66 and .78 ?

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}
- How often is \hat{p} between .7 and .74 ?
- 68% of the time
- How often is \hat{p} between .66 and .78 ?
- 99.7% of the time

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}
- How often is \hat{p} between .7 and .74 ?
- 68% of the time
- How often is \hat{p} between . 66 and .78 ?
- 99.7% of the time
- Suppose we poll 16 times as many people as before How often will \hat{p} lie between .71 and .73 ?

Hypothetical Survey

- Suppose you do a poll in a population with $p=.72$
- You choose n so that $\sigma=.02$
- You do the survey and get some \hat{p}
- How often is \hat{p} between .7 and .74 ?
- 68% of the time
- How often is \hat{p} between . 66 and .78 ?
- 99.7% of the time
- Suppose we poll 16 times as many people as before How often will \hat{p} lie between .71 and .73 ?
- 95% of the time

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey
- Get $\hat{p}=.64$

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey
- Get $\hat{p}=.64$
- Have $\sigma=.005$

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey
- Get $\hat{p}=.64$
- Have $\sigma=.005$
- We are 95% confident that p lies between .63 and .65

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey
- Get $\hat{p}=.64$
- Have $\sigma=.005$
- We are 95% confident that p lies between .63 and .65
- We say that ". 63 to .65 " is the 95% confidence interval

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey
- Get $\hat{p}=.64$
- Have $\sigma=.005$
- We are 95% confident that p lies between .63 and .65
- We say that ". 63 to .65 " is the 95% confidence interval
- What would be the 99.7% confidence interval?

Confidence Intervals

- Note: if \hat{p} is within $k \%$ of p, then p is within $k \%$ of \hat{p}
- Suppose we do a survey
- Get $\hat{p}=.64$
- Have $\sigma=.005$
- We are 95% confident that p lies between .63 and .65
- We say that ". 63 to .65 " is the 95% confidence interval
- What would be the 99.7% confidence interval?
- [.625, .655] (shorthand)

Confidence Intervals

- What about the 98% confidence interval?

Confidence Intervals

- What about the 98% confidence interval?
- What value should we look up on the z-score table?

Confidence Intervals

- What about the 98% confidence interval?
- What value should we look up on the z-score table?
- .99

Confidence Intervals

- What about the 98% confidence interval?
- What value should we look up on the z-score table?
- .99

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881
$\mathbf{2 . 3}$.9893	.9896	.9898	.9901	.9904	.9906	.9909

Confidence Intervals

- What about the 98% confidence interval?
- What value should we look up on the z-score table?
- .99

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881
$\mathbf{2 . 3}$.9893	.9896	.9898	.9901	.9904	.9906	.9909

Confidence Intervals

- So the confidence interval is:

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error
- m.e. $=z \cdot \sigma$

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error
- m.e. $=z \cdot \sigma$
- In our case, m.e. $\approx .012$ (1.2\%)

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error
- m.e. $=z \cdot \sigma$
- In our case, m.e. $\approx .012$ (1.2\%)
- With a margin of error, you must always give a confidence level

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error
- m.e. $=z \cdot \sigma$
- In our case, m.e. $\approx .012$ (1.2\%)
- With a margin of error, you must always give a confidence level
- We are 98% confident that the answer is within 1.2% of 64%

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error
- m.e. $=z \cdot \sigma$
- In our case, m.e. $\approx .012$ (1.2\%)
- With a margin of error, you must always give a confidence level
- We are 98% confident that the answer is within 1.2% of 64%
- To cut the margin of error in half, how many more people do we need to survey?

Confidence Intervals

- So the confidence interval is: $[.64-.005 \cdot 2.33,64+.005 \cdot 2.33] \approx[.628, .652]$
- The radius of the interval (half the width) is called the margin of error
- m.e. $=z \cdot \sigma$
- In our case, m.e. $\approx .012$ (1.2\%)
- With a margin of error, you must always give a confidence level
- We are 98% confident that the answer is within 1.2% of 64%
- To cut the margin of error in half, how many more people do we need to survey?
- Four times as many

Government Shutdown

- According to Rasmussen:

Government Shutdown

- According to Rasmussen:
- 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

Government Shutdown

- According to Rasmussen:
- 71% of GOP voters would rather keep the government shutdown going until ACA is defunded
- m.e. is 3% with a 95% level of confidence

Government Shutdown

- According to Rasmussen:
- 71% of GOP voters would rather keep the government shutdown going until ACA is defunded
- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?

Government Shutdown

- According to Rasmussen:
- 71% of GOP voters would rather keep the government shutdown going until ACA is defunded
- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?
- [.68, .74]

Government Shutdown

- According to Rasmussen:
- 71% of GOP voters would rather keep the government shutdown going until ACA is defunded
- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?
- [.68, .74]
- What is the m.e. for a 99.7% level of confidence?

Government Shutdown

- According to Rasmussen:
- 71% of GOP voters would rather keep the government shutdown going until ACA is defunded
- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?
- [.68, .74]
- What is the m.e. for a 99.7% level of confidence?
- First need to know σ

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{1 . 9}$.9713	.9719	.9726	.9732	.9738	.9744	.9750
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{1 . 9}$.9713	.9719	.9726	.9732	.9738	.9744	.9750
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{1 . 9}$.9713	.9719	.9726	.9732	.9738	.9744	.9750
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- So the m.e. for a 99.7% level of confidence is .0459

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{1 . 9}$.9713	.9719	.9726	.9732	.9738	.9744	.9750
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- So the m.e. for a 99.7% level of confidence is .0459
- We are 99.7% sure that the percentage of GOP voters that favor the shutdown is within 4.59% of 71%

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{1 . 9}$.9713	.9719	.9726	.9732	.9738	.9744	.9750
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- So the m.e. for a 99.7% level of confidence is .0459
- We are 99.7% sure that the percentage of GOP voters that favor the shutdown is within 4.59% of 71%
- What is the 99.7% confidence interval?

Government Shutdown

- For the 95% m.e., we have $.03=z \cdot \sigma$

\mathbf{z}	$\mathbf{0 . 0 0}$	$\mathbf{0 . 0 1}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 5}$	$\mathbf{0 . 0 6}$
$\mathbf{1 . 9}$.9713	.9719	.9726	.9732	.9738	.9744	.9750
$\mathbf{2 . 0}$.9772	.9778	.9783	.9788	.9793	.9798	.9803
$\mathbf{2 . 1}$.9821	.9826	.9830	.9834	.9838	.9842	.9846
$\mathbf{2 . 2}$.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- So the m.e. for a 99.7% level of confidence is .0459
- We are 99.7% sure that the percentage of GOP voters that favor the shutdown is within 4.59% of 71%
- What is the 99.7% confidence interval?
- Approximately [.664, .756]

