

▶ We examined polls with yes/no questions

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"

(ロ)、(型)、(E)、(E)、 E) の(の)

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"

(ロ)、(型)、(E)、(E)、 E) の(の)

• Estimate *p* by
$$\hat{p} = \frac{x}{n}$$

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"

(ロ)、(型)、(E)、(E)、 E) の(の)

• Estimate *p* by
$$\hat{p} = \frac{x}{n}$$

► n is

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"

- Estimate *p* by $\hat{p} = \frac{x}{n}$
 - n is the number of people we poll

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"

- Estimate *p* by $\hat{p} = \frac{x}{n}$
 - n is the number of people we poll

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate *p* by $\hat{p} = \frac{x}{n}$
 - *n* is the number of people we poll
 - x is the number of people who say "yes"

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p} = \frac{x}{p}$
 - n is the number of people we poll
 - x is the number of people who say "yes"

• \hat{p} is normally distributed with:

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p} = \frac{x}{p}$
 - n is the number of people we poll
 - x is the number of people who say "yes"

- \hat{p} is normally distributed with:
 - mean $\mu =$

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p} = \frac{x}{p}$
 - n is the number of people we poll
 - x is the number of people who say "yes"

• \hat{p} is normally distributed with:

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate *p* by $\hat{p} = \frac{x}{n}$
 - n is the number of people we poll
 - x is the number of people who say "yes"

- \hat{p} is normally distributed with:
 - mean $\mu = p$
 - standard deviation $\sigma =$

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p} = \frac{x}{p}$
 - n is the number of people we poll
 - x is the number of people who say "yes"

- \hat{p} is normally distributed with:
 - mean $\mu = p$

• standard deviation
$$\sigma = \sqrt{\frac{p(1-p)}{n}}$$

- We examined polls with yes/no questions
- p is the true proportion that would answer "yes"
- Estimate p by $\hat{p} = \frac{x}{p}$
 - n is the number of people we poll
 - x is the number of people who say "yes"
- \hat{p} is normally distributed with:
 - mean $\mu = p$

• standard deviation
$$\sigma = \sqrt{\frac{p(1-p)}{n}}$$

standard deviation is also called sampling error

Sampling Error

• To cut σ in half, what must you do to *n*?

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Sampling Error

- To cut σ in half, what must you do to n?
 - Suppose p = .62

Get σ in terms of n:

n	100	200	400	800	1600	3200
σ	.0485	.0343	.0243	.0172	.0121	.0086

Sampling Error

- To cut σ in half, what must you do to n?
 - Suppose p = .62

Get σ in terms of n:

Γ	n	100	200	400	800	1600	3200
	σ	.0485	.0343	.0243	.0172	.0121	.0086

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

• If you quadruple n, σ shrinks by 2

Suppose you do a poll in a population with p = .72

Suppose you do a poll in a population with p = .72

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• You choose *n* so that $\sigma = .02$

Suppose you do a poll in a population with p = .72

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}

Suppose you do a poll in a population with p = .72

- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}
 - How often is \hat{p} between .7 and .74?

Suppose you do a poll in a population with p = .72

- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}
 - How often is \hat{p} between .7 and .74?
 - ▶ 68% of the time

Suppose you do a poll in a population with p = .72

- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}
 - How often is \hat{p} between .7 and .74?
 - 68% of the time
 - How often is \hat{p} between .66 and .78?

Suppose you do a poll in a population with p = .72

- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}
 - How often is \hat{p} between .7 and .74?
 - 68% of the time
 - How often is \hat{p} between .66 and .78?
 - ▶ 99.7% of the time

- Suppose you do a poll in a population with p = .72
- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}
 - How often is \hat{p} between .7 and .74?
 - 68% of the time
 - How often is \hat{p} between .66 and .78?
 - ▶ 99.7% of the time
 - Suppose we poll 16 times as many people as before How often will p lie between .71 and .73?

- Suppose you do a poll in a population with p = .72
- You choose *n* so that $\sigma = .02$
- You do the survey and get some \hat{p}
 - How often is \hat{p} between .7 and .74?
 - 68% of the time
 - How often is \hat{p} between .66 and .78?
 - 99.7% of the time
 - Suppose we poll 16 times as many people as before How often will p lie between .71 and .73?

▶ 95% of the time

▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}

▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose we do a survey

▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Suppose we do a survey
 - ▶ Get $\hat{p} = .64$

▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Suppose we do a survey
 - ▶ Get $\hat{p} = .64$
 - ► Have σ = .005

- ▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}
- Suppose we do a survey
 - ▶ Get $\hat{p} = .64$
 - ► Have σ = .005
- We are 95% confident that p lies between .63 and .65

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

- ▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}
- Suppose we do a survey
 - ▶ Get $\hat{p} = .64$
 - ► Have σ = .005
- We are 95% confident that p lies between .63 and .65
- ▶ We say that ".63 to .65" is the 95% confidence interval

- ▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}
- Suppose we do a survey
 - ▶ Get $\hat{p} = .64$
 - ► Have σ = .005
- We are 95% confident that p lies between .63 and .65
- ▶ We say that ".63 to .65" is the 95% confidence interval

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

What would be the 99.7% confidence interval?

- ▶ Note: if \hat{p} is within k% of p, then p is within k% of \hat{p}
- Suppose we do a survey
 - ▶ Get $\hat{p} = .64$
 - ► Have σ = .005
- We are 95% confident that p lies between .63 and .65
- ▶ We say that ".63 to .65" is the 95% confidence interval

- What would be the 99.7% confidence interval?
 - [.625, .655] (shorthand)

▶ What about the 98% confidence interval?

▶ What about the 98% confidence interval?

What value should we look up on the z-score table?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ► What about the 98% confidence interval?
 - What value should we look up on the z-score table?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

.99

What about the 98% confidence interval?

What value should we look up on the z-score table?

• .99

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What about the 98% confidence interval?

What value should we look up on the z-score table?

• .99

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

So the confidence interval is:

 So the confidence interval is: [.64 - .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error

• $m.e. = z \cdot \sigma$

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error

- $m.e. = z \cdot \sigma$
- ▶ In our case, $m.e. \approx .012$ (1.2%)

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error
 - $m.e. = z \cdot \sigma$
 - ▶ In our case, $m.e. \approx .012$ (1.2%)
- With a margin of error, you must always give a confidence level

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error
 - $m.e. = z \cdot \sigma$
 - ▶ In our case, $m.e. \approx .012$ (1.2%)
- With a margin of error, you must always give a confidence level
- ▶ We are 98% confident that the answer is within 1.2% of 64%

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error
 - $m.e. = z \cdot \sigma$
 - ▶ In our case, $m.e. \approx .012$ (1.2%)
- With a margin of error, you must always give a confidence level
- ▶ We are 98% confident that the answer is within 1.2% of 64%
- To cut the margin of error in half, how many more people do we need to survey?

- So the confidence interval is:
 [.64 .005 · 2.33, 64 + .005 · 2.33] ≈ [.628, .652]
- The radius of the interval (half the width) is called the margin of error
 - $m.e. = z \cdot \sigma$
 - ▶ In our case, $m.e. \approx .012$ (1.2%)
- With a margin of error, you must always give a confidence level
- ▶ We are 98% confident that the answer is within 1.2% of 64%
- To cut the margin of error in half, how many more people do we need to survey?

Four times as many

According to Rasmussen:

- According to Rasmussen:
 - 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- According to Rasmussen:
 - 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

m.e. is 3% with a 95% level of confidence

According to Rasmussen:

 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?

According to Rasmussen:

 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?
 - ▶ [.68, .74]

According to Rasmussen:

 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?
 - ▶ [.68, .74]
- What is the m.e. for a 99.7% level of confidence?

According to Rasmussen:

 71% of GOP voters would rather keep the government shutdown going until ACA is defunded

- m.e. is 3% with a 95% level of confidence
- What is the 95% confidence interval?
 - ▶ [.68, .74]
- ▶ What is the m.e. for a 99.7% level of confidence?
 - First need to know σ

• For the 95% m.e., we have $.03 = z \cdot \sigma$

• For the 95% m.e., we have $.03 = z \cdot \sigma$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• For the 95% m.e., we have $.03 = z \cdot \sigma$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
	.9713						
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881

▶ So $\sigma \approx .0153$

For the 95% m.e., we have $.03 = z \cdot \sigma$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
	.9713						
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

• So $\sigma \approx .0153$

▶ So the m.e. for a 99.7% level of confidence is .0459

For the 95% m.e., we have $.03 = z \cdot \sigma$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- ▶ So the m.e. for a 99.7% level of confidence is .0459
- ► We are 99.7% sure that the percentage of GOP voters that favor the shutdown is within 4.59% of 71%

For the 95% m.e., we have $.03 = z \cdot \sigma$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- So the m.e. for a 99.7% level of confidence is .0459
- ► We are 99.7% sure that the percentage of GOP voters that favor the shutdown is within 4.59% of 71%

What is the 99.7% confidence interval?

For the 95% m.e., we have $.03 = z \cdot \sigma$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881

- So $\sigma \approx .0153$
- So the m.e. for a 99.7% level of confidence is .0459
- ► We are 99.7% sure that the percentage of GOP voters that favor the shutdown is within 4.59% of 71%
- What is the 99.7% confidence interval?
 - Approximately [.664, .756]