Game Theory

Mathematically, a game is any situation such that:

Game Theory

Mathematically, a game is any situation such that:

- there are at least two players

Game Theory

Mathematically, a game is any situation such that:

- there are at least two players
- each player has a list of moves they can make (strategies)

Game Theory

Mathematically, a game is any situation such that:

- there are at least two players
- each player has a list of moves they can make (strategies)
- there are payoffs for each eventual outcome

New Grading Scheme

- Everyone write your name and either α or β

New Grading Scheme

- Everyone write your name and either α or β
- Your card will be compared randomly to another's:

New Grading Scheme

- Everyone write your name and either α or β
- Your card will be compared randomly to another's:
- If you put α and the other puts β, you get A and the other gets F

New Grading Scheme

- Everyone write your name and either α or β
- Your card will be compared randomly to another's:
- If you put α and the other puts β, you get A and the other gets F
- If you both put α, you both get B -

New Grading Scheme

- Everyone write your name and either α or β
- Your card will be compared randomly to another's:
- If you put α and the other puts β, you get A and the other gets F
- If you both put α, you both get B -
- If you put β and the other puts α, you get F and the other gets A

New Grading Scheme

- Everyone write your name and either α or β
- Your card will be compared randomly to another's:
- If you put α and the other puts β, you get A and the other gets F
- If you both put α, you both get B -
- If you put β and the other puts α, you get F and the other gets A
- If you both put β, you both get $B+$

New Grading Scheme

- Everyone write your name and either α or β
- Your card will be compared randomly to another's:
- If you put α and the other puts β, you get A and the other gets F
- If you both put α, you both get B -
- If you put β and the other puts α, you get F and the other gets A
- If you both put β, you both get $B+$

The outcome matrix:

Real World Examples

- Is this a game?

Real World Examples

- Is this a game?
- No - we don't know the players' payoffs

Real World Examples

- Is this a game?
- No - we don't know the players' payoffs
- For real world games, this is often the case:

Real World Examples

- Is this a game?
- No - we don't know the players' payoffs
- For real world games, this is often the case:
- Countries in an arms race

Real World Examples

- Is this a game?
- No - we don't know the players' payoffs
- For real world games, this is often the case:
- Countries in an arms race
- Making a bid at an auction

Real World Examples

- Is this a game?
- No - we don't know the players' payoffs
- For real world games, this is often the case:
- Countries in an arms race
- Making a bid at an auction
- A company and a union negotiating a contract

Real World Examples

- Is this a game?
- No - we don't know the players' payoffs
- For real world games, this is often the case:
- Countries in an arms race
- Making a bid at an auction
- A company and a union negotiating a contract
- prosecution and defense deciding which arguments to put before the jury

Possible Payoffs

Selfish Strategy:

- If you only value your own grade, you might assign values:

Possible Payoffs

Selfish Strategy:

- If you only value your own grade, you might assign values:
- A is $3, B+$ is $2, B-$ is $1, F$ is 0

Possible Payoffs

Selfish Strategy:

- If you only value your own grade, you might assign values:
- A is $3, \mathrm{~B}+$ is $2, \mathrm{~B}$ - is $1, \mathrm{~F}$ is 0
- Suppose two such people play against one another.

Possible Payoffs

Selfish Strategy:

- If you only value your own grade, you might assign values:
- A is $3, \mathrm{~B}+$ is $2, \mathrm{~B}$ - is $1, \mathrm{~F}$ is 0
- Suppose two such people play against one another.
- The outcome matrix is then:

Possible Payoffs

- Note that you shouldn't choose β :

Possible Payoffs

- Note that you shouldn't choose β :
- If your opponent chooses β, you're better off choosing α $(3>2)$

Possible Payoffs

- Note that you shouldn't choose β :
- If your opponent chooses β, you're better off choosing α (3>2)
- If your opponent chooses α, you're better off choosing α $(1>0)$

Possible Payoffs

- Note that you shouldn't choose β :
- If your opponent chooses β, you're better off choosing α $(3>2)$
- If your opponent chooses α, you're better off choosing α $(1>0)$
- One strategy strongly dominates the other if your payoff from one is higher than the payoff from the other, regardless of others' strategies.

Possible Payoffs

- Note that you shouldn't choose β :
- If your opponent chooses β, you're better off choosing α $(3>2)$
- If your opponent chooses α, you're better off choosing α $(1>0)$
- One strategy strongly dominates the other if your payoff from one is higher than the payoff from the other, regardless of others' strategies.
- Moral: you should never pick a dominated strategy

Possible Payoffs

- The other person also shouldn't choose a dominated strategy, and should also choose α

Possible Payoffs

- The other person also shouldn't choose a dominated strategy, and should also choose α
- You both get $B-$.

Possible Payoffs

- The other person also shouldn't choose a dominated strategy, and should also choose α
- You both get $B-$.
- Moral: rational play can lead to bad outcomes (both players would prefer $(B+, B+)$ to $(B-, B-))$

Possible Payoffs

- The other person also shouldn't choose a dominated strategy, and should also choose α
- You both get B -
- Moral: rational play can lead to bad outcomes (both players would prefer $(B+, B+)$ to $(B-, B-))$
- This time of game is called Prisoners' Dilema

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, B+$ is $3, B-$ is $2, F$ is 0

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, B+$ is $3, B-$ is $2, F$ is 0
- Suppose two such people play against one another.

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, B+$ is $3, B-$ is $2, F$ is 0
- Suppose two such people play against one another.
- The outcome matrix is then:

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, \mathrm{~B}+$ is $3, \mathrm{~B}-$ is $2, \mathrm{~F}$ is 0
- Suppose two such people play against one another.
- The outcome matrix is then:

- Is there a dominated strategy?

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, \mathrm{~B}+$ is $3, \mathrm{~B}-$ is $2, \mathrm{~F}$ is 0
- Suppose two such people play against one another.
- The outcome matrix is then:

- Is there a dominated strategy?
- No:

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, \mathrm{~B}+$ is $3, \mathrm{~B}-$ is $2, \mathrm{~F}$ is 0
- Suppose two such people play against one another.
- The outcome matrix is then:

- Is there a dominated strategy?
- No:
- If the other chooses α, you should also choose α

Possible Payoffs

Altruistic Strategy

- You might value A less, since it means that someone in the class fails. You might assign values:
- A is $1, B+$ is $3, B-$ is $2, F$ is 0
- Suppose two such people play against one another.
- The outcome matrix is then:

- Is there a dominated strategy?
- No:
- If the other chooses α, you should also choose α
- If the other chooses β, you should also choose β
- This is called a coordination game

Possible Payoffs

- What if you are selfish, and you know that the other is altruistic?

Possible Payoffs

- What if you are selfish, and you know that the other is altruistic?
- The outcome matrix looks like:

Possible Payoffs

- What if you are selfish, and you know that the other is altruistic?
- The outcome matrix looks like:

- Do you have a dominated strategy?

Possible Payoffs

- What if you are selfish, and you know that the other is altruistic?
- The outcome matrix looks like:

- Do you have a dominated strategy?
- Yes - β

Possible Payoffs

- Does your opponent have a dominated strategy?

Possible Payoffs

- Does your opponent have a dominated strategy?
- No

Possible Payoffs

- Does your opponent have a dominated strategy?
- No
- Suppose that the other knows that you are selfish What should they do?

Possible Payoffs

- Does your opponent have a dominated strategy?
- No
- Suppose that the other knows that you are selfish What should they do?
- If they are rational, and they think you're rational, they'll know that you'll play α

Possible Payoffs

- Does your opponent have a dominated strategy?
- No
- Suppose that the other knows that you are selfish What should they do?
- If they are rational, and they think you're rational, they'll know that you'll play α
- So they should play α

Possible Payoffs

- Does your opponent have a dominated strategy?
- No
- Suppose that the other knows that you are selfish What should they do?
- If they are rational, and they think you're rational, they'll know that you'll play α
- So they should play α
- Moral: If you don't have a dominated strategy, try to predict your opponents' choice

Grading Scheme

Fact: in Prisoners' Dilema situation, roughly 30\% choose β

A Second Game

- Everyone in class write down their name and a number between 1 and 100

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot$ (how far they are off)

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot$ (how far they are off)
- Example:

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot$ (how far they are off)
- Example:
- Suppose that there are three people in class

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot$ (how far they are off)
- Example:
- Suppose that there are three people in class
- They choose 5,30,55

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot$ (how far they are off)
- Example:
- Suppose that there are three people in class
- They choose 5,30,55
- $\frac{2}{3} \cdot \frac{5+30+55}{3}=20$

A Second Game

- Everyone in class write down their name and a number between 1 and 100
- We will take $\frac{2}{3}$ the average of everyones' numbers
- Whoever is closest wins $\$ 5-(.01) \cdot$ (how far they are off)
- Example:
- Suppose that there are three people in class
- They choose 5,30,55
- $\frac{2}{3} \cdot \frac{5+30+55}{3}=20$
- 30 wins $\$ 4.90$

